
⚡Instant Rice 🍚
A book of quick and easy Rice runtimes for weeknight compiling,

By Gavin Zhao & Milo Kron

Rice
Difficult 
One-Time 
lowering 
implementation

Free or easy to implement 
translation and optimization

0.05 
Token/Second with 

base Wasm 
implementation

0.75 
Token/Second with 

LLVM/OpenMP

Instant 
Rice

Summary
This project presents several 
implementations of Rice–an 
academic language used in Will 
Crichton's CSCI1951Q, 
conventionally compiled to Web 
Assembly–using MLIR 
(Multi-Level Intermediate 
Representation), a general 
purpose intermediate 
representation and compiler 
infrastructure.
Motivation
The exercise is meant to 
demonstrate MLIR’s support for 
relatively easy conversion into 
several lower level runtimes. In 
the course of this project, we 
implemented a single 
compilation step from (a 
subset of) Rice to MLIR, 
followed by a number of MLIR 
passes which allowed us to 
compile Rice source code t0 
OpenMP, C, and LLVM. 
Results
We ran GPT-2 inference in 
Rice’s base Wasm runtime, and 
in an optimized, parallelized 
compilation using LLVM and 
OpenMP. This resulted in 15x 
throughput improvement.

Benchmark: GPT-2 Inference

And more?



GitHub source: https://github.com/Second-Last/csci1951q-rice-mlir. Reproduction instructions in 
the README. 

Introduction 
MLIR (Multi-Level Intermediate Representation), released in 2019, is an intermediate 
representation and compiler infrastructure framework. It can be thought of as “an IR to rule them 
all”. It achieves this by allowing many different dialects to coexist in one MLIR program as long 
as the types of the arguments to an operator are accepted. A dialect defines custom types and 
operators, and these types and operators can operate on types and operators from other 
dialects. There are low-level dialects that are almost if not exactly word-by-word translatable to 
low-level code, such as the llvm dialect for LLVM and emitc dialect for C. A MLIR program 
written purely in the llvm or emitc dialect are really just LLVM IR or C programs written in the 
MLIR syntax. Then, there are high-level dialects like: 

-​ builtin for basic datatypes like i32, i64, f32, etc.  
-​ memref for describing regions of memory. 
-​ scf for describing control flow blocks such as if and for loops. 
-​ arith dialect for describing arithmetic operations. 
-​ tensor dialect for describing abstract operations on tensors. 

 
There are generally two types of passes in MLIR: optimization passes that don't transform its 
inputs to a new dialect, and translation passes that transform its input to a (usually) lower-level 
dialect. The beauty of MLIR is that passes that work on one (or a few) dialects can still run even 
if the program contains other dialects. MLIR’s power comes from this composability. For 
example, an optimization pass written for the memref dialect automatically benefits all 
languages that represent their array operations using memref. 
 
In this way, MLIR hopes to, quoting from the MLIR website, “significantly reduce the cost of 
building domain specific compilers, and aid in connecting existing compilers together.” MLIR has 
become popular especially in the AI community for optimizing AI models or transforming code to 
run on custom hardware accelerators. However, no mainstream programming language has a 
MLIR-based compiler that is used in production. 
 
Even worse, most existing tutorials of MLIR simply stop at being able to compile their toy 
language into the llvm dialect. Very few tutorials explore the modularity aspect of MLIR. That 
is, the language implementer only needs to implement a dialect and appropriate translation 
passes just for the special operators and types of their language that cannot be expressed with 
any existing dialect; then, with little to no code, they can use the optimization and transformation 
passes available from MLIR’s wide ecosystem to compile to multiple backends, such as llvm 
dialect for compiling to LLVM IR, emitc dialect for compiling to C, openmp for CPU 
parallelization, and spirv for compiling to GPU, etc. To our knowledge, there exist no 

https://github.com/Second-Last/csci1951q-rice-mlir


up-to-date examples that show an end-to-end compiler compiling a toy language to multiple 
backends/runtimes using MLIR. 
 
Is this just because language implementers are still catching up to this new technology, or does 
MLIR itself poses usability issues despite the advantages that it claims? To answer this 
question, we will implement a MLIR backend for the Rice compiler and benchmark it on a Rice 
implementation of LLM text generation on the GPT2 model. Rice is the instructional language 
used for CSCI1951Q that compiles to WebAssembly and uses the Wasmtime runtime. Rice is 
an imperative language and its features important to this project are: ints, floats, strings, 
multi-dimensional arrays, if statements, and while loops. These features, plus some standard 
library functions for performing file I/O, are all we need to implement GPT2 inference. 
 
This compiler will emit MLIR using high-level dialects mixed with our own rice dialect for 
custom Rice operators. Then, we will write the appropriate translation passes that only need to 
translate the rice dialect into lower-level dialects. We’ll then use existing MLIR passes to 
compile a Rice program down to native machine code and parallelized native machine code 
(through OpenMP runtime). This project serves both as a learning experience for MLIR and an 
opportunity to evaluate how well the current status of MLIR holds up to its claims. 

Implementation 
Since many high-level MLIR dialects are building blocks for high-level code, we decided to 
generate MLIR from TIR. 

Rice Dialect Design 
To maximize the modularity of MLIR, we want to avoid using custom rice dialect operators as 
much as possible and try to represent as much as we can of the language using high-level 
MLIR dialects: 

-​ fnt -> i32 
-​ float -> f32 
-​ string -> memref<?xi8> 

(Any object-oriented code is not supported.) 
 
Note on memref, since it’ll be referenced in more detail later: 

-​ memref<nxT> is a pointer to a block of n contiguous elements of type T in memory. 
-​ memref<?xT> is the same, except that the number of elements is unknown at 

compile-time. 
-​ memref<nxmxT> is a point to a block of n * m contiguous elements of type T in 

memory. By default it uses a row-major layout with n rows and m columns, but one can 
specify different layouts by adding more parameters like memref<nxmxT, layout>. 

https://wasmtime.dev/


-​ memref<?x?xT> is similar except that both the row and column dimensions are 
unknown. 

 
Simple binary operators like math operations are directly compiled to their corresponding 
operators in the arith dialect, so we won’t discuss them in detail. 

Rice Arrays 
We’d like to particularly highlight the design of Rice arrays. The original, canonical Rice arrays 
essentially follow the array-of-pointers design, where a multi-dimensional array like [[int]] 
doesn’t store all the ints in a contiguous block of memory, but instead stores an array of 
pointers to [int]s. This makes the implementation pleasing, but is not friendly to performance 
optimizations, especially parallelization. 
 
Our design is to have two array representations. Say we have a [[int]]. 

-​ The original array-of-pointers design, compiles to memref<?xmemref<?xi32>>.  
-​ Contiguous array, compiles to memref<?x?xi32>. 

 
The beauty of MLIR is that in the high-level Rice MLIR dialect, they’re represented using a 
unified custom type, rice.array<T>. Then, there are two passes that implement the two 
different compilation strategies. Then, the contiguous array pass is configured to only run on 
functions annotated with the #[kernel] attribute, where the array-of-pointers pass is run on all 
other code. Array operators are also encoded in the rice dialect such as rice.array_load 
and rice.array_copy, that gets compiled to their corresponding memref implementations. 
 
This aligns with the design philosophy of MLIR: you have one high-level dialect that is more 
generalized and consistent across different representations/backends, and then you have 
different passes to lower them to different representations/backends depending on your needs. 
 
(Admittedly this changes the semantics of the Rice programming language a bit, but the original 
behavior was not used in the GPT2 implementation so in the end this had no effect. If we were 
lowering to MLIR after the BC stage, we could’ve run some dataflow analysis to inform us what 
arrays never pass out a portion/slice of their contents. It is one of our “what-if”s that if we had 
tried to compile to MLIR after the BC stage, we might have harder initial MLIR generation but we 
could’ve generate optimized code due to the dataflow analysis passes we would’ve been able to 
run) 

Parallelization 
This is where the modularity of MLIR comes into play. Normally, if you want to implement 
parallelization support for a programming language, you need to either go really low-level and 
implement all those threading using libc, or generate obscure, almost DSL-like code such as 



OpenMP. However, here in our Rice MLIR compiler, even though we also compile to OpenMP, 
we only need to write a single simple pass to make loops parallelized. 
 
The pipeline to compile to OpenMP is: 

1)​ Rice has a scf dialect for writing control flow such as scf.if and scf.while, which is 
what we compile our Rice if loops and while loops into. 

2)​ Rice doesn’t have for loops, but MLIR has a pass scf-uplift-while-to-for that 
transforms scf.while loops with certain patterns into equivalent scf.for loops. Most 
of our while patterns for array iterations are simple enough to be recognized. 

3)​ We write a pass scf-for-to-parallel that transforms all scf.for in functions 
annotated with #[parallel_for] into scf.parallel, which has the exact same API 
as scf.for except that each iteration of the loop gets run in parallel. This pass is less 
than 100LOC. 

4)​ MLIR has a pass convert-scf-to-openmp that translates scf.parallel for loops 
into OpenMP parallel constructs. 

 
The only part we had to write code for is to 3) write the pass scf-for-to-parallel. Then, 
by specifying the correct order to apply those passes, all for loops in functions marked as 
#[parallel_for] gets parallelized through OpenMP. In less than 100 LOC, we achieve a 2x 
speed up on a 8-core machine compared to the non-parallelized MLIR version. 

Evaluation 
We translated PicoGPT, a reference implementation for generating text using the GPT2 large 
language model, into Rice. Due to the 4.1GiB memory limit of the Wasm runtime, our GPT2 
implementation only runs the core algorithm which is the 12 rounds of transformer blocks. The 
pre-processing of converting text into tokens and weights and post-processing of converting the 
matrix into string text is done in a Python wrapper script. Our running time measurement only 
contains the time it takes for the Rice program to run and doesn’t include the Python wrapper’s 
running time.  
 
We compare the throughput (number of tokens generated per second) of this code generating 
text using the GPT2 124M model with the following three implementations: 
 

1.​ Baseline (Wasm): The baseline performance uses the Rice compiler compiled with 
--release and #[jit] annotated for every function. Garbage Collection was disabled 
(using Collector::Null as the garbage collector) to give a fair comparison since we 
never free our arrays in our MLIR implementation. 

2.​ MLIR (non-parallel): translates the Rice compiler’s high-level MLIR output into low-level 
llvm dialect which MLIR then translated to LLVM IR and we manually compiled to 
machine code with clang -O2. 



3.​ MLIR (parallel): the same as above, but between translating the high-level MLIR to 
low-level llvm, we insert passes that convert Rice while loops into parallelized for 
loops expressed with the openmp dialect, which itself also has a pass to get translated 
into the llvm dialect. The final LLVM IR is compiled with clang -O2 -fopenmp. 

 
We can see that in the best case, the parallel MLIR is around 15x faster than the baseline 
performance. Even the non-parallel MLIR is around 7.5x faster than the baseline, but it’s 
possible that this is mostly due to running in Wasmtime vs running native code, so this 
improvement is less significant. 
 
Perhaps the most significant result is this: the pass converting non-parallel to parallel MLIR was 
100 lines, took, generously, half an hour to write, and yielded a 2x improvement in performance. 
We think this alone is enough to demonstrate the modularity of MLIR, and give a sense of how 
much time and effort it can save for language implementers. We see this even in less than 
optimal implementation conditions–we did not have a full dataflow analysis pass. If we were to 
redesign Rice’s compilation pipeline, one could imagine having access to more fine-grained 
analysis before MLIR code generation, which would give us an opportunity to parallelize more 
parts of Rice. For example, scf.parallel is a very aggressive operation and doesn’t do any 
checks to make sure the iterations are independent, which means MLIR cannot be too 
aggressive itself when translating it down to openmp. However, if we had a dataflow analysis 
pass that provides proof of independent accesses between loop iterations, we could supply this 
proof to the affine.parallel operation from the affine dialect which provides more 
optimizations like loop fusion and reordering out of the box. 
 



We have also experimented with compiling Rice to C by lowering the rice dialect to the emitc 
dialect. This was our initial implementation, but unfortunately the emitc dialect only allows 
memref with static dimensions (i.e. no memref<?xi32>), so rice.array<T> must be 
lowered directly to emitc which proved to be too difficult. We decided to switch to lowering to 
the llvm dialect in the middle of implementation.The ease of this transition was in itself an 
endorsement of MLIR’s flexibility. 


	Introduction 
	Implementation 
	Rice Dialect Design 
	Rice Arrays 

	Parallelization 

	Evaluation 

