~Instant Rice -~

A book of quick and easy Rice runtimes for weeknight compiling,
By Gavin Zhao & Milo Kron

Summary

This project presents several :

implementations of Rice—an : Rice
: S Difficult

academic language used in Will One-Ti

Crichton's CSCI1951Q, ne-lime

conventionally compiled to Web !Owerlng _

Assembly-using MLIR implementation

(Multi-Level Intermediate
Representation), a general
purpose intermediate

representation and compiler
infrastructure.

Motivation

The exercise is meant to
demonstrate MLIR’s support for
relatively easy conversion into
several lower level runtimes. In
the course of this project, we

implemented a single = to imol »
compilation step from (a [€E€ Or €asy 10 IMpicmen

subset of) Rice to MLIR, translation and optimization

followed by a number of MLIR
passes which allowed us to

compile Rice source code t0
Results

We ran GPT-2 inference in g N\
Rice's base Wasm runtime, and O O 5

in an optimized, parallelized .
compilation using LLVM and Token/Second with
OpenMP. This resulted in 15x base Wasm
throughput improvement. _ implementation .

S NVIDIA.
CUDA

And more?

GitHub source: https://github.com/Second-Last/csci1951g-rice-mlir. Reproduction instructions in
the README.

Introduction

MLIR (Multi-Level Intermediate Representation), released in 2019, is an intermediate
representation and compiler infrastructure framework. It can be thought of as “an IR to rule them
all”. It achieves this by allowing many different dialects to coexist in one MLIR program as long
as the types of the arguments to an operator are accepted. A dialect defines custom types and
operators, and these types and operators can operate on types and operators from other
dialects. There are low-level dialects that are almost if not exactly word-by-word translatable to
low-level code, such as the 11vm dialect for LLVM and emitc dialect for C. A MLIR program
written purely in the 11vm or emitc dialect are really just LLVM IR or C programs written in the
MLIR syntax. Then, there are high-level dialects like:

- builtin for basic datatypes like 132, 164, 32, etc.

- memref for describing regions of memory.

- scf for describing control flow blocks such as if and for loops.

- arith dialect for describing arithmetic operations.

- tensor dialect for describing abstract operations on tensors.

There are generally two types of passes in MLIR: optimization passes that don't transform its
inputs to a new dialect, and franslation passes that transform its input to a (usually) lower-level
dialect. The beauty of MLIR is that passes that work on one (or a few) dialects can still run even
if the program contains other dialects. MLIR’s power comes from this composability. For
example, an optimization pass written for the memref dialect automatically benefits all

languages that represent their array operations using memref.

In this way, MLIR hopes to, quoting from the MLIR website, “significantly reduce the cost of
building domain specific compilers, and aid in connecting existing compilers together.” MLIR has
become popular especially in the Al community for optimizing Al models or transforming code to
run on custom hardware accelerators. However, no mainstream programming language has a
MLIR-based compiler that is used in production.

Even worse, most existing tutorials of MLIR simply stop at being able to compile their toy
language into the 11vm dialect. Very few tutorials explore the modularity aspect of MLIR. That
is, the language implementer only needs to implement a dialect and appropriate translation
passes just for the special operators and types of their language that cannot be expressed with
any existing dialect; then, with little to no code, they can use the optimization and transformation
passes available from MLIR’s wide ecosystem to compile to multiple backends, such as 11vm
dialect for compiling to LLVM IR, emitc dialect for compiling to C, openmp for CPU

parallelization, and spirv for compiling to GPU, etc. To our knowledge, there exist no

https://github.com/Second-Last/csci1951q-rice-mlir

up-to-date examples that show an end-to-end compiler compiling a toy language to multiple
backends/runtimes using MLIR.

Is this just because language implementers are still catching up to this new technology, or does
MLIR itself poses usability issues despite the advantages that it claims? To answer this
question, we will implement a MLIR backend for the Rice compiler and benchmark it on a Rice
implementation of LLM text generation on the GPT2 model. Rice is the instructional language
used for CSCI1951Q that compiles to WebAssembly and uses the Wasmtime runtime. Rice is
an imperative language and its features important to this project are: ints, floats, strings,
multi-dimensional arrays, if statements, and while loops. These features, plus some standard
library functions for performing file 1/0, are all we need to implement GPT2 inference.

This compiler will emit MLIR using high-level dialects mixed with our own rice dialect for
custom Rice operators. Then, we will write the appropriate translation passes that only need to
translate the rice dialect into lower-level dialects. We'll then use existing MLIR passes to
compile a Rice program down to native machine code and parallelized native machine code
(through OpenMP runtime). This project serves both as a learning experience for MLIR and an
opportunity to evaluate how well the current status of MLIR holds up to its claims.

Implementation

Since many high-level MLIR dialects are building blocks for high-level code, we decided to
generate MLIR from TIR.

Rice Dialect Design

To maximize the modularity of MLIR, we want to avoid using custom rice dialect operators as
much as possible and try to represent as much as we can of the language using high-level
MLIR dialects:

- fnt->132

- float->f32

- string->memref<?xi8>
(Any object-oriented code is not supported.)

Note on memref, since it'll be referenced in more detail later:
- memref<nxT> is a pointer to a block of n contiguous elements of type T in memory.
- memref<?xT> is the same, except that the number of elements is unknown at
compile-time.
- memref<nxmxT> is a point to a block of n * m contiguous elements of type T in
memory. By default it uses a row-major layout with n rows and m columns, but one can
specify different layouts by adding more parameters like memref<nxmxT, layout>.

https://wasmtime.dev/

- memref<?x?xT> is similar except that both the row and column dimensions are
unknown.

Simple binary operators like math operations are directly compiled to their corresponding
operators in the arith dialect, so we won't discuss them in detail.

Rice Arrays

We’d like to particularly highlight the design of Rice arrays. The original, canonical Rice arrays
essentially follow the array-of-pointers design, where a multi-dimensional array like [[int]]
doesn’t store all the ints in a contiguous block of memory, but instead stores an array of
pointers to [int]s. This makes the implementation pleasing, but is not friendly to performance
optimizations, especially parallelization.

Our design is to have two array representations. Say we have a [[int]].
- The original array-of-pointers design, compiles to memref<?xmemref<?xi32>>.
- Contiguous array, compiles to memref<?x?xi32>.

The beauty of MLIR is that in the high-level Rice MLIR dialect, they’re represented using a
unified custom type, rice.array<T>. Then, there are two passes that implement the two
different compilation strategies. Then, the contiguous array pass is configured to only run on
functions annotated with the #[kernel] attribute, where the array-of-pointers pass is run on all
other code. Array operators are also encoded in the rice dialect such as rice.array_load
and rice.array_copy, that gets compiled to their corresponding memref implementations.

This aligns with the design philosophy of MLIR: you have one high-level dialect that is more
generalized and consistent across different representations/backends, and then you have
different passes to lower them to different representations/backends depending on your needs.

(Admittedly this changes the semantics of the Rice programming language a bit, but the original
behavior was not used in the GPT2 implementation so in the end this had no effect. If we were
lowering to MLIR after the BC stage, we could’ve run some dataflow analysis to inform us what
arrays never pass out a portion/slice of their contents. It is one of our “what-if’s that if we had
tried to compile to MLIR after the BC stage, we might have harder initial MLIR generation but we
could’ve generate optimized code due to the dataflow analysis passes we would’ve been able to
run)

Parallelization

This is where the modularity of MLIR comes into play. Normally, if you want to implement
parallelization support for a programming language, you need to either go really low-level and
implement all those threading using libc, or generate obscure, almost DSL-like code such as

OpenMP. However, here in our Rice MLIR compiler, even though we also compile to OpenMP,
we only need to write a single simple pass to make loops parallelized.

The pipeline to compile to OpenMP is:

1) Rice has a scT dialect for writing control flow such as scf.if and scf.while, which is
what we compile our Rice if loops and while loops into.

2) Rice doesn'’t have for loops, but MLIR has a pass scf-uplift-while-to-for that
transforms scf .while loops with certain patterns into equivalent scf . for loops. Most
of our while patterns for array iterations are simple enough to be recognized.

3) We write a pass scf-for-to-parallel that transforms all scf.for in functions
annotated with #[parallel_for] into scf.parallel, which has the exact same API
as scf.for except that each iteration of the loop gets run in parallel. This pass is less
than 100LOC.

4) MLIR has a pass convert-scf-to-openmp that translates scf.parallel for loops
into OpenMP parallel constructs.

The only part we had to write code for is to 3) write the pass scf-for-to-parallel. Then,
by specifying the correct order to apply those passes, all for loops in functions marked as
#[parallel_for] gets parallelized through OpenMP. In less than 100 LOC, we achieve a 2x
speed up on a 8-core machine compared to the non-parallelized MLIR version.

Evaluation

We translated PicoGPT, a reference implementation for generating text using the GPT2 large
language model, into Rice. Due to the 4.1GiB memory limit of the Wasm runtime, our GPT2
implementation only runs the core algorithm which is the 12 rounds of transformer blocks. The
pre-processing of converting text into tokens and weights and post-processing of converting the
matrix into string text is done in a Python wrapper script. Our running time measurement only
contains the time it takes for the Rice program to run and doesn’t include the Python wrapper’s
running time.

We compare the throughput (number of tokens generated per second) of this code generating
text using the GPT2 124M model with the following three implementations:

1. Baseline (Wasm): The baseline performance uses the Rice compiler compiled with
--release and #[jit] annotated for every function. Garbage Collection was disabled
(using Collector: :Null as the garbage collector) to give a fair comparison since we

never free our arrays in our MLIR implementation.
2. MLIR (non-parallel): translates the Rice compiler’s high-level MLIR output into low-level

11vm dialect which MLIR then translated to LLVM IR and we manually compiled to
machine code with clang -02.

3. MLIR (parallel): the same as above, but between translating the high-level MLIR to
low-level 11vm, we insert passes that convert Rice while loops into parallelized for
loops expressed with the openmp dialect, which itself also has a pass to get translated
into the 11vm dialect. The final LLVM IR is compiled with clang -02 -fopenmp.

Throughput Comparison

0.7

0.6 1

0.5 ~

0.4

0.3~

0.2 1

Tokens per second (higher is better)

0.1

0.0 -
Baseline (Wasm) MLIR {non-parallel) MLIR (parallel)

We can see that in the best case, the parallel MLIR is around 15x faster than the baseline
performance. Even the non-parallel MLIR is around 7.5x faster than the baseline, but it's
possible that this is mostly due to running in Wasmtime vs running native code, so this
improvement is less significant.

Perhaps the most significant result is this: the pass converting non-parallel to parallel MLIR was
100 lines, took, generously, half an hour to write, and yielded a 2x improvement in performance.
We think this alone is enough to demonstrate the modularity of MLIR, and give a sense of how
much time and effort it can save for language implementers. We see this even in less than
optimal implementation conditions—we did not have a full dataflow analysis pass. If we were to
redesign Rice’s compilation pipeline, one could imagine having access to more fine-grained
analysis before MLIR code generation, which would give us an opportunity to parallelize more
parts of Rice. For example, scf.parallel is a very aggressive operation and doesn’t do any
checks to make sure the iterations are independent, which means MLIR cannot be too
aggressive itself when translating it down to openmp. However, if we had a dataflow analysis
pass that provides proof of independent accesses between loop iterations, we could supply this
proof to the affine.parallel operation from the affine dialect which provides more
optimizations like loop fusion and reordering out of the box.

We have also experimented with compiling Rice to C by lowering the rice dialect to the emitc
dialect. This was our initial implementation, but unfortunately the emitc dialect only allows
memreT with static dimensions (i.e. no memref<?xi32>), so rice.array<T> must be
lowered directly to emitc which proved to be too difficult. We decided to switch to lowering to

the 11vm dialect in the middle of implementation.The ease of this transition was in itself an
endorsement of MLIR’s flexibility.

	Introduction
	Implementation
	Rice Dialect Design
	Rice Arrays

	Parallelization

	Evaluation

