
Dimspector: Static Shape Inference in PyTorch
https://github.com/nwrousell/dimspector

NOAH ROUSELL, Brown University, Rhode Island
PRACCHO MUNA-MCQUAY, Brown University, Rhode Island

Why Shape Inference?

• Tensor shapes are difficult to reason about, especially with broadcasting
and reshaping.

• Discovering a shape error after hours of training is costly.
• A developer tool should make this reasoning explicit and detect bugs early.
→ jaxtyping checks shapes dynamically at function boundaries.
→ PyTea performs static analysis, but relies on extensive hand-written models

and an SMT solver.

Spot the Bug

Users annotate parameters with [shapes]:

1 def relative_attention_cross(
2 x_q: [batch, seq_q, d_model], x_kv: [batch, seq_k, d_model], W_q: [d_model, heads, d_k],
3 W_k: [d_model, heads, d_k], W_v: [d_model, heads, d_v], rel_pos_bias: [seq_k, seq_q]
4):
5 query: [batch, heads, seq_q, d_k] = torch.transpose(torch.reshape(x_q @ torch.reshape(W_q, (x_q.shape[2],

-1)), (x_q.shape[0], x_q.shape[1], W_q.shape[1], W_q.shape[2])), 1, 2)
6 key: [batch, heads, seq_k, d_k] = torch.transpose(torch.reshape(x_kv @ torch.reshape(W_k, (x_kv.shape[2],

-1)), (x_kv.shape[0], x_kv.shape[1], W_k.shape[1], W_k.shape[2])), 1, 2)
7 value: [batch, heads, seq_k, d_v] = torch.transpose(torch.reshape(x_kv @ torch.reshape(W_v, (x_kv.shape[2],

-1)), (x_kv.shape[0], x_kv.shape[1], W_v.shape[1], W_v.shape[2])), 1, 2)
8 scores: [batch, heads, seq_q, seq_k] = query @ torch.transpose(key, -1, -2)
9 biased = scores + rel_pos_bias

[Inferred shapes] reveal the bug:
• The function computes attention scores and adds a relative position bias.
• Mismatch: seq_k ≠ seq_q.
• Scores have shape [batch, heads, seq_q, seq_k], while rel_pos_bias has shape
[seq_k, seq_q].

• The bias must be transposed before addition.

How does it work?

• Lower from Python AST to a control flow graph over basic blocks containing
target = expr statements

• Check constraints and infer shape of each expr via hand-written + signature-
informed models

• Make assumption that symbolic dimensional variables are unique and perform
equality checks via polynomial canonicalization + syntactic equality check

Authors’ Contact Information: Noah Rousell, Brown University, Providence, Rhode Island, noah_rousell@brown.edu;
Praccho Muna-McQuay, Brown University, Providence, Rhode Island, praccho@brown.edu.

https://github.com/nwrousell/dimspector

1 Introduction
If you ask any machine learning practitioner about the most notorious error they encounter
when using their favorite Python tensor library, the most likely answer is the dreaded shape
mismatch. As PyTorch users ourselves, we’ve wondered why there isn’t a go-to tool to infer
the shape of Tensor s throughout the functions we write. While several works [2] [4] have
tackled this problem, the fact that the vast majority of people don’t use such tools already
signals that the existing formalisms have not translated into tools that are intuitive, reliable,
and convenient enough for real-world development. We want to change that. In this paper,
we present a proof-of-concept static analysis to infer shapes and catch shape mismatch errors
in PyTorch code.

The greatest obstacle in doing this type of analysis in Python is its dynamism, and a lack of
any static typing, let alone our Tensor shapes. For example, considering the following snippet.

1 def linear(x, W, b):
2 x = torch.matmul(x, W)
3 x = x + b
4 return x

While we can infer, by virtue of being passed to torch.matmul, that x and W ought to be of
type Tensor, we know nothing about their shapes or the shape of the result! How can we
statically know that the matrix multiply, or even the addition of x + b that follows, are valid
operations that won’t lead to a runtime error? The answer is shape annotations, specifically
around our functions parameters, and potential return shape.

1 def linear(x: [B, in],
2 W: [in, out],
3 b: [out]) -> [B, out]:
4 x = torch.matmul(x, W)
5 x = x + b
6 return x

If the signature of torch.matmul over two-dimensional matrices could appropriately express
the constraint that the first operand’s last dimension and second operand’s first dimension
should be the same, then we could verify inx = inW are indeed the same dimension, and this
operation could be deemed valid. The signature for torch.matmulwould also express the shape
of the output in terms of variables from the shape of the input, and we could infer that after
the assignment on line 4 that x would now have shape [B, out]. Similarly, with a way of
resolving the broadcast that happens with the addition with b, we would find that [B, out]
and [out] indeed broadcast, and produces a resultant Tensor with shape [B, out].

What complicates things however is tracking the flows of dimensional variables, especially
when new Tensors come into inception using them. The following is a common pattern in
PyTorch code, where we extract the shape from one Tensor to produce a new one.

1 def uninteresting_mask(x: [H, W]) -> [H, W]:
2 h, w = x.shape
3 mask = torch.ones((h, w))
4 x = x * mask
5 return x

We cannot then just reason in terms of Tensors with shapes consisting of dimensional
variables, but also take care to track the flows of these dimensional variables out of tensors.
In the above when we create a Tensor using torch.ones with passed locals (h,w) as the shape
argument, we better be able to say that its resultant Tensorwill have shape [H, W]. Otherwise,

Dimspector: Static Shape Inference in PyTorch 3

we would be unable to conclude that the element-wise multiplication that follows on line 4 is
shape-safe.
One more complicating factor is reshapes of Tensors, as in the following.

1 def flatten_image(x: [B, H, W]) -> [B, HW]:
2 b = x.shape[0]
3 flattened = x.reshape((b, -1))
4 return flattened

To resolve the resulting shape, one would want to allow certain dimensions to be expressed
as dimensional expressions over dimensional variables, such as the product H·W that appears
in the resulting shape. For example, reshaping a tensor of shape [B, H, W] using arguments
(b, -1) requires inferring the unspecified second dimension (just as PyTorch does at runtime).
Its size must equal the contraction of the remaining dimensions, i.e. H·W.
The preceding examples emphasize the mechanisms which exist in common PyTorch

patterns, and that a good shape inference would have to perform.

1.1 Related Work
The most similar project currently in active use is jaxtyping, which enables users to annotate
the shapes of tensor parameters, enabling runtime typecheckers to check shapes on function
entry [3]. Despite this being a runtime tool, its popularity demonstrates the importance of
solving this problem.
PyTea is a static analyzer for python PyTorch programs, aimed at catching shape errors

[2]. It differs from our analysis in that it relies on an SMT solver to check constraints. We
hypothesize that most PyTorch programs do not require the path specificity of symbolic
execution, and without this complexity devise an eager constraint-checking scheme as an
alternative to dispatching constraints to an offline SMT solver.

2 Methods
2.1 Intermediate Representation
We built off the python parser from the RustPython project, before lowering to a simple
intermediate representation (IR) more amenable to analysis [1].

The IR for a single python function consists of a directed graph over basic blocks, each of
which contain a sequence of statements and terminating instruction. Each statement consists
of an expression 𝑒 , as well as an optional target path 𝜋 to assign to. We model expressions as
paths, constants, binary operators, functions, method calls, tuples, and indexing operations.
This is formalized in Figure 1.

2.2 Analysis
2.2.1 Semantics. The analysis is a forward flow analysis that tracks the flow of Variables 𝜈
inside of functions, and uses function signatures to check constraints and perform inference
at callsites. Variables 𝜈 can represent dimensional variables 𝑣 , tensors 𝑇 [𝑑1, ..., 𝑑𝑛], tuples
(𝑣1, ..., 𝑣𝑛), as well as ⊥, and ⊤. Dimensional variables represent arithmetic expressions; the
leaves are either symbolic (as the B and C are in [B, C]) or a concrete number 𝑛. This is
formalized in Figure 2.
We rely on user annotations to determine the shapes of parameters and return values of

functions and apply our flow analysis inside of functions, tracking how shapes propagate
through their contents.
At each location 𝑙 in the body of a function, we have a domain 𝜎 𝑙

in/out : 𝜋 ↦→ {𝜈} mapping
from locals with path 𝜋 to the set of possible variables 𝜈 the path 𝜋 may be bound to. In a
function body with no control flow, this would (most likely) be a singleton set, since each

4 Noah Rousell and Praccho Muna-McQuay

Symbol 𝛼 Number 𝑛 String 𝑠

Path 𝜋 ::= 𝑠 | 𝑠 .𝜋
Constant 𝑐 ::= None | Bool | String | Int | Float

Expr 𝑒 ::= 𝜋 | 𝑐 | 𝑒1 ⊕ 𝑒2 | 𝑓 (𝑒∗) | (𝑒1, . . . , 𝑒𝑘) | 𝑒1 [𝑒2]
Instruction I ::= (𝜖 | 𝜋) := 𝑒

Fig. 1. Expression-level syntax.

Symbol 𝛼 Number 𝑛 Location 𝑙

DimVar 𝑑 ::= 𝛼 | 𝑛 | 𝑑1 + 𝑑2 | 𝑑1 · 𝑑2
Variable 𝜈 ::= ⊤ | 𝑑 | 𝑇 [𝑑1, . . . , 𝑑𝑛] | (𝜈1, . . . , 𝜈𝑘)
Domain 𝜎 ::= 𝜋 ↦→ {𝜈}

Fig. 2. Analysis-domain syntax.

assignment to a local should fully define its shape for a given location and the ones that follow
it (unless reassigned). At the very first location in a function body 𝑙 = 1, we can initialize 𝜎 1

in
from the shape annotations we require on our function parameters.
Our analysis produces 𝜎 𝑙

in as

𝜎 𝑙
in =

⊔
𝑖∈pred(𝑙)

𝜎 𝑖
out

where we define the join operator ⊔ as simply the union across the mapped sets for each local
𝜋

𝜎 𝑙 ⊔ 𝜎 𝑙 ′ = { 𝜋 ↦→ 𝜎 𝑙 [𝜋] ∪ 𝜎 𝑙 ′ [𝜋]}
We then produce 𝜎 𝑙

out as
𝜎 𝑙
out = 𝑓 (I𝑙 , 𝜎 𝑙

in)
using a transfer function 𝑓 : I × 𝜎 → 𝜎 . At its core, it must be able to take the right-hand
side expression of (𝜖 | 𝜋) := 𝑒 , determine the set of variables it may be, and assign that to
the optional target path 𝜋 in 𝜎 . We define the meta-function E : 𝑒, 𝜎 ↦→ {𝜈} for this task. The
transfer function can then be defined in terms of E:

𝑓 (I, 𝜎) =
{
𝜎 [𝜋 ↦→ E(𝑒, 𝜎)] if I = 𝜋 := 𝑒,

𝜎 otherwise.

The function E is the crux of our analysis, and its definition is the subject of the the
following sections.
An assumption implicit in this transfer function is that procedure calls may not mutate

existing references to Tensors. In other words, evaluating an expression cannot change the
shape information associated with any variable already in 𝜎 . This is the case for many
PyTorch patterns, where functions often produce new references to the same underlying
memory (i.e. reshapes) yet leave the original Tensor’s shape binding unchanged. Under this
restriction, all shape effects are localized to the newly introduced path 𝜋 , simplifying the
analysis considerably.

Dimspector: Static Shape Inference in PyTorch 5

2.2.2 Evaluating Expressions. For some types of expression 𝑒 , the behavior of E is fairly
straightforward. These simple cases are

E(𝑒, 𝜎) =



𝜎 [𝜋] if 𝑒 = 𝜋,

{ n } if 𝑒 = 𝑛 is a constant, 𝑐 ∈ Int,

{ ⊤ } if 𝑒 = 𝑐 is a constant, 𝑐 ∉ Int,

{ (𝜈1, . . . , 𝜈𝑘) | 𝜈𝑖 ∈ E(𝑒𝑖 , 𝜎) } if 𝑒 = (𝑒1, . . . , 𝑒𝑘),

In essence, accessing a path maps to accessing its representation in 𝜎 , constant Ints are
considered to be potential concrete DimVars, and tuples (𝑒1, . . . , 𝑒𝑛) of expressions are turned
into the set of tuple-valued variables formed by taking the Cartesian product of their compo-
nent analyses. These cases require no additional structure: they simply propagate or wrap
the information already present in 𝜎 without introducing new constraints on dimensional
variables.

2.2.3 Models. For the remaining, more interesting, cases, such as binary operators and
method calls, we dispatch within a set of Models that define constraints and infer the return
shape for each operator in terms of the input dimensional variables.
For example, a Model representing a (non-batched) matrix multiplication operator with

signature [a, b], [b, c] → [a, c] would check that the second dimensional variable of the
first input Tensor is equivalent to the first dimensional variable of the second input Tensor,
and then infer a return shape of rank 2, with the first dimensional variable coming from the
first Tensor’s first dimensional variable, and the second dimensional variable coming from
the second Tensor’s second dimensional variable.

In this case, this Model can be fully represented by the operator’s signature, but there exist
more complex cases that require procedure-specific models.
Consider the example of a broadcasted addition, there would exist an infinite number

of signatures describing the abstract shapes of its inputs (i.e. [B, D], [D] → [B, D] and
[B, C, D], [D] → [B, C, D]). Enumerating all such admissible signatures is impossible.
Instead, what we need is a procedure-specific rule that takes as input the abstract shapes of
the arguments at the call site, and constructs the resulting abstract shape. They are moreover
responsible for determining any shape mismatch errors that may occur.
In the case of a broadcasted operation between two tensors, this would involve left ap-

pending singleton dimensions onto the shorter shape, then ensuring either each dim matches
symbolically, or is singleton. If this check fails for any dimension, we found an error! This is
precisely the same as the runtime check that PyTorch does, but lifted to the abstract domain
so that it operates over symbolic dimensional variables rather than concrete integers.
We have implemented procedure-specific models for many of PyTorch’s core operations,

such as torch.reshape, torch.cat, broadcasting, and batched matrix multiplication. We handle
shape-annotated user functions via the pure signature approach described.

2.2.4 Constraint Checking. Our analysis catches shape errors by introducing equivalence
constraints over dimensional variables. Given that our dimensional variables can represent
products and sums of of other dimensional variables, equivalence checking is non-trivial.
We make the assumption that symbolic dimensional variables are only equivalent if they

have the same symbol. This means that, for example, a-1 ≠ b-1, even though there are valid
assignments to a, b that satisfy this constraint. This assumption enables us to check constraints
without an SMT solver by converting dimensional variables to a canonical polynomial form
and checking for syntactical equivalence.

6 Noah Rousell and Praccho Muna-McQuay

We believe it is reasonable to expect developers to use the same symbolic dimensional variables
in annotations when appropriate. Consider a function that performs matrix multiplication
which is initially typed by a developer as ([a, b], [c, d]) → [e, f]. Our analysis will report
an error upon observing the torch.matmul constraint over the inner dimensions, reporting
that b ≠ c (and another error for the return annotation), prompting the user to adjust the
signature to ([a,b], [b,c]) → [a,c]. Note that these annotations lead to more readable code,
as they fully encode the relations between the dimensional variables of the parameters and
return.

3 Evaluation
The current lowering phase and analysis cannot handle Python dictionaries or classes, which
are of course plentiful in true PyTorch programs. In lieu of evaluating our analysis on true
programs, we have constructed a functional version of the "Hello world" of deep learning,
training a Multi-Layer Perceptron (MLP) network on the MNIST dataset. We therefore can
only make claims about the efficacy of our analysis on programs written in a functional style,
though we note that PyTea handles more complicated objects in its IR (albeit with a significant
cost in complexity), giving us optimism about the feasibility of extending our analysis [2].

3.1 Inference on MNIST
The full (correct) MNIST program can be found at this link, and our analysis’s inference at
this link (in our IR format); we’re including snippets here due to space constraints.

1 def linear(x: [batch, in], weight: [out, in], bias: [out]) -> [batch, out]:
2 return x @ torch.transpose(weight) + bias
3

4 def forward(x: [batch, 1, 28, 28], w1: [hidden, 784], b1: [hidden], w2:
[hidden, hidden], b2: [hidden], w3: [classes, hidden], b3: [classes]) ->
[batch, classes]:

5 x: [batch, 784] = torch.view(x, (x.shape[0], -1))
6 x: [batch, hidden] = torch.nn.functional.relu(linear(x, w1, b1))
7 x: [batch, hidden] = torch.nn.functional.relu(linear(x, w2, b2))
8 x: [batch, classes] = linear(x, w3, b3)
9 return x

In the snippet above, the added annotations to assignments come from our analysis. In this
simple case, the analysis is able to infer and check the shape of variables at each location.

In the core training loop below, shape inference is waylaid upon entry into the loop, as
our analysis is ignorant of the value of i. This highlights a large potential issue: even though
our analysis could continue to infer the shapes of images, labels, and outputs if it knew the
value of i, the introduction of a single top element can have a cascading effect. In this specific
case, both range iterators are simple enough that we could unroll or otherwise statically
analyze them to determine an appropriate value for i.

1 def init_weight_matrix(in_features: [in], out_features: [out]) -> [out, in]: ...
body elided

2 def init_bias_vector(out_features: [out]) -> [out]: ... # body elided
3

4 def main():
5 ... # hyperparameter declarations
6 epochs: 10 = 10
7

https://github.com/nwrousell/dimspector/blob/main/tests/programs/integration/mnist_functional.py
https://github.com/nwrousell/dimspector/blob/main/tests/programs/integration/mnist_functional_inference.txt

Dimspector: Static Shape Inference in PyTorch 7

8 w1: [256, 784] = init_weight_matrix(input_size, hidden_size)
9 b1: [256] = init_bias_vector(hidden_size)
10 w2: [256, 256] = init_weight_matrix(hidden_size, hidden_size)
11 b2: [256] = init_bias_vector(hidden_size)
12 w3: [10, 256] = init_weight_matrix(hidden_size, num_classes)
13 b3: [10] = init_bias_vector(num_classes)
14

15 train_images: [1000, 1, 28, 28] = torch.zeros(num_train, 1, 28, 28)
16 train_labels: [1000] = torch.randint(0, num_classes, (num_train))
17 test_images: [200, 1, 28, 28] = torch.zeros(num_test, 1, 28, 28)
18 test_labels: [200] = torch.randint(0, num_classes, (num_test))
19

20 optimizer = torch.optim.Adam((w1, b1, w2, b2, w3, b3), lr=learning_rate)
21 num_train_batches: 16 = num_train + batch_size - 1 // batch_size
22 for epoch in range(1, epochs + 1):
23 total_train_loss = 0.0
24 for i in range(num_train_batches):
25 start = i * batch_size
26 end = min(start + batch_size, num_train)
27 images = train_images[start:end]
28 labels = train_labels[start:end]
29

30 optimizer.zero_grad()
31 outputs = forward(images, w1, b1, w2, b2, w3, b3)
32 loss = torch.nn.functional.cross_entropy(outputs, labels)
33 loss.backward()
34 optimizer.step()

3.2 Catching subtle bugs
Below is a function that computes attention and adds a relative position bias to the score
matrix. This function has a bug on line 14. Our analysis prints out the inferred shapes through
line 13, and reports "mismatched dimension, seq_k ≠ seq_q."
Without the inlaid inferred shapes, it’s tricky to see that this function has a bug in it, and

where it comes from. With the inferred types and error message, we notice that scores on
line 13 has shape [.., seq_q, seq_k], which doesn’t broadcast with the [seq_k, seq_q] shape
of rel_pos_bias; this makes it easy to see that rel_pos_bias needs to be transposed!

1 def relative_attention_cross(x_q: [batch, seq_q, d_model], x_kv:
[batch, seq_k, d_model], W_q: [d_model, heads, d_k], W_k:
[d_model, heads, d_k], W_v: [d_model, heads, d_v], rel_pos_bias:
[seq_k, seq_q]):

2 batch: batch = x_q.shape[0]
3 seq_q: seq_q = x_q.shape[1]
4 seq_k: seq_k = x_kv.shape[1]
5 d_model: d_model = x_q.shape[2]
6 heads: heads = W_q.shape[1]
7 d_k: d_k = W_q.shape[2]
8 d_v: d_v = W_v.shape[2]
9 query: [batch, heads, seq_q, d_k] = torch.transpose(torch.reshape(x_q @

torch.reshape(W_q, (d_model, -1)), (batch, seq_q, heads, d_k)), 1, 2)
10 key: [batch, heads, seq_k, d_k] = torch.transpose(torch.reshape(x_kv @

torch.reshape(W_k, (d_model, -1)), (batch, seq_k, heads, d_k)), 1, 2)

8 Noah Rousell and Praccho Muna-McQuay

11 value: [batch, heads, seq_k, d_v] = torch.transpose(torch.reshape(x_kv @
torch.reshape(W_v, (d_model, -1)), (batch, seq_k, heads, d_v)), 1, 2)

12

13 scores: [batch, heads, seq_q, seq_k] = query @ torch.transpose(key, -1, -2)
14 biased = scores + rel_pos_bias
15 weights = torch.softmax(biased, dim=-1)
16 out = weights @ value
17 return out

Dimspector: Static Shape Inference in PyTorch 9

References
[1] [n. d.]. RustPython parser. https://github.com/RustPython/Parser
[2] Ho Young Jhoo, Sehoon Kim, Woosung Song, Kyuyeon Park, DongKwon Lee, and Kwangkeun Yi. 2021. A Static

Analyzer for Detecting Tensor Shape Errors in Deep Neural Network Training Code. (2021). doi:10.48550/ARXIV.
2112.09037

[3] Patrick Kidger, Roman Knyazhitskiy, Brent Yi, Nathan Simpson, Oliver Woodman, Alex Ford, Nima Shoghi,
Patrick Kunzmann, Peter Hawkins, Peter Roelants, Sergei Lebedev, Yuxuan Jiang, Zac Cranko, Raffaello Baluyot,
Daniel Ward, Eugene Brevdo, jianlijianli, vincentlo-a, Nick Groszewski, Nathaniel Starkman, Matthew Johnson,
Martí Zamora, Kevin P Murphy, Jérome Eertmans, Joao Pedro Araujo, Dangyi Liu, Artur Chakhvadze, Andy Rock,
Alex Fan, and Afroz Mohiuddin. 2025. patrick-kidger/jaxtyping. https://github.com/patrick-kidger/jaxtyping.
https://github.com/patrick-kidger/jaxtyping

[4] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis Smaragdakis. 2020. Static
Analysis of Shape in TensorFlow Programs (Artifact). 6:1–6:3 pages. doi:10.4230/DARTS.6.2.6

https://github.com/RustPython/Parser
https://doi.org/10.48550/ARXIV.2112.09037
https://doi.org/10.48550/ARXIV.2112.09037
https://github.com/patrick-kidger/jaxtyping
https://doi.org/10.4230/DARTS.6.2.6

	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Intermediate Representation
	2.2 Analysis

	3 Evaluation
	3.1 Inference on MNIST
	3.2 Catching subtle bugs

	References

