sniff-test: Light-weight, Automated
Checking of Code Properties in Rust

Alex Portland

Problem

r

.

\

Developers need a way to
automatically reason about
whether their code is UB- or

panic-free!

7

Formal reasoning tools are

great, but only cover a
restrictive subset of most

run
\.

languages & take a long time to

J

Results

security-critical Rust crate for
zero-cost memory manipulation.

Analyzes 2807 reachable functions
from the crate's public API in ~4
seconds, finding 5 consistency
issues.

Two were unsafe blocks known to be
undocumented (which I opened a PR
to fix), but the other three are cases
where their safety comments are
likely incomplete.

Sniff-test runs quickly on real crates
and can find real issues!

/ Tested on zerocopy, a popular,\

Approach

4 )

Use a simple analysis for
structured doc comments to
make sure all preconditions
are considered.

\ /J./;‘

P
%
#[sniff_tool::check_unsafe]

fn main(ptr: *mut u32) -> u32 {
unsafe { *ptr }

J

[

ERROR: ‘'main’ doesn't
consider safety obligations of
“raw_ptr_deref": [non-null,
aligned, provenance]

#[sniff_tool::check_unsafe]

fn main(ptr: *mut u32) -> u32 {

unsafe { *ptr }

}


https://github.com/google/zerocopy
https://github.com/google/zerocopy/pull/2847

Introduction:

Developers constantly have to reason about complex properties of their code. Often, the first
property to reason about is correctness — whether their code faithfully implements their desired
functionality or abstract specification. However, the overarching goal of correct code has more
dimensions than might be initially apparent.

For instance, is your code still considered ‘correct’ if it has subtle undefined behavior under very
specific input conditions? For the meticulous developer, the answer is likely to be “clearly not”
(as it could lead to an accidental or indeterminate outcome), but what if the code instead just
panics at runtime if those conditions? For some developers, this might be of little consequence,
but in high-stress, embedded environments, this could be equally unacceptable.

These different dimensions of correctness are vital to consider, especially in low-level languages
and libraries whose users depend on these properties for the correctness of their own systems.
However, these properties often involve complex, nested conditions, making them difficult to
reason about in practice, and developers lack structured tools to check that they’ve done so
correctly.

Sniff-test aims to be a lightweight solution that checks that developers have properly considered
such code properties when needed. The system’s core design goal is practicality for use on real
codebases, which hinges on analysis being lightweight enough to be scalable and requiring
limited modification to existing codebases.

Approach

Sniff-test is conceptually built on the idea that functions often have obligations, or preconditions
that must be upheld by their callers to ensure a given property holds. We detect where these
obligations occur, whether it's from language primitives (like a raw pointer dereference),
standard library functions (like std::mem::transmute()) or from user-defined functions. We then
ensure that a function either a) documents that it has considered & fulfilled each of those
obligations where they occur (either at the language primitive or the callsite) or b) propagates
those obligations to its own callers through a structured, readable doc comment.

As a whole, this can modularly ensure that developers have, at the very least, considered each
of the obligations required for their code to be undefined behavior-, or panic-free, asserting that
the most likely failure method is for developers to forget to consider their obligations rather than
improperly fulfill them.

Implementation:

Sniff-test is currently implemented for Rust as a plugin to the compiler, which gives it access to
the internal data structures needed for its analysis. It currently implements checking for the
absence of panics and the absence of undefined behavior (often called ‘safety’ in the Rust
ecosystem), but the techniques used could be expanded to other properties.



When run on a given crate, the tool will first build a callgraph of all code reachable from the
user-annotated entrypoints. Then, for each of those reachable functions, it sources all
documentation pertaining to relevant properties, and checks for consistency between them. If
there are any consistency issues, they are presented using compiler-like diagnostics to the user,
pointing them to the exact lines of their code that were found to be problematic. To explain the
high-level implementation of the tool, we’'ll briefly walk through how each of these steps is
implemented in practice.

User Annotation
To start using Sniff-test, a developer has to do is add a special
#! [sniff tool::check unsafe] attribute to the root of their Rust crate. This indicates that

they’d like all of the functions in their code to be checked for the safety property.

If they’d like more fine-grained control over which call-trees in their codebase are checked, they
canaddthe #! [sniff tool::check unsafe pub] attribute instead to only check code

reachable from their public API, or put the check_unsafe attribute on a specific function within
their code, to only check code reachable from that function. This is useful for modularly porting
code to use Sniff-test’s formalized checks, as code quality can be tightened-up one subtree at a
time. All attributes also have check_panics equivalents which check for the absence of panics
rather than the absence of undefined behavior.

Call-graph Analysis

Sniff-test then builds an over-approximate call-graph based on all code that is reachable from
those user-annotated entry points. For now, this process is relatively simple compared to many
analyses. We walk through Rust’'s mid level intermediate representation (MIR), looking for all
calls to a function or method that we can concretely resolve. We build the set of all functions that
are transitively reachable. This has the known limitation of not handling dynamic dispatch on
trait objects, which we aim to fix in the future. The goal was to get this primitive version
implemented and running first, with refinements to come later.

Our call-graph analysis is robust to handling static dispatch with generics, as we enforce that all
implementers of a trait have the same obligations of their callers. Although this is a restriction on
the kinds of code patterns that are allowed (and thus we will likely add an option to disable it in
the future), for now this allows for modular checking where static dispatch to an associated
function for a trait can be determined to have the exact obligations found on that trait definition.

Language Primitive Detection

Similarly, we detect uses of potentially problematic language primitives at the MIR level. For
instance, calls to the Rust language items for panics are flagged as unconditionally problematic
for panic-freedom, and raw pointer dereferences are flagged as conditionally problematic for
UB-freedom (as it's UB if the pointer is unaligned or null). We then use these primitives as a
base case for our analysis — any function that uses them must either dismiss the obligations or
propagate them to their callers.



Consistency Checking
Now that Sniff-test knows what code we need to analyze, it must actually check that code
properties have been considered at all reachable callsites to potentially violate functions.

Sniff-test gets the value of doc comments on function definitions at the MIR level. However,
inline doc comments on expressions are lost when lowering to MIR, so it cross-references the
span for a found call or language primitive to find the HIR node it corresponds to. Once it has
the doc comment for a function’s obligations, and a call site’s justification, it has to check that
the justification is sufficient.

To do this very quickly and be minimally reliant on additional user effort, we introduce a
‘buzzword’ heuristic for determining if a callsite has sufficiently considered a given condition.
This strategy simply marks a condition as validly considered by a callsite’s comment if the name
of the condition (the buzzword) occurs in it.

Early testing showed that a realistically-sized Rust codebase with ~30 unsafe function
definitions unsurprisingly will have on the order of ~300 unique callsites to those functions.
Thus, if we can limit the requirement of adding specific Sniff-test style comments to definitions,
rather than all calls, it will greatly reduce the amount of developer effort required to use the tool.

A key downside of this method is that the output of the tool is now dependent on the developer’s
ability to choose representative condition names that are specific enough to uniquely identify a
given condition, but not vague enough such that safety comments would inadvertently include
them and pass the check without considering the condition. To address this, Sniff-test uses a
light-weight specification grammar that function developers can use to have their condition
names be properly recognized where they’re actually considered while making it difficult for
them to accidentally be dismissed where they're not. For instance, a condition called
“bit_validity” must contain both the words “bit” & “validity”, which is unlikely in a comment that
doesn't properly address the bit validity requirement of the function it’s calling.

Furthermore, a naive implementation of buzzword checking is very brittle to the exact wording
used in safety comments — a safety comment saying that “‘a must outlive ‘b” will likely not satisfy
a “lifetime” condition, despite obviously referring to it. Sniff-test implements a synonym layer
which matches commonly used safety requirements with synonyms phrases for the same
concept. This gives added flexibility and, in the above example, the comment would be found to
satisfy the condition as “lifetime” is part of the same synonym equivalence class as “outlives”.

Although extremely simple, testing shows that this checking technique is both fast and reliable
in practice.

Artifact

Development on Sniff-test is ongoing at hitps://github.com/cognitive-engineering-lab/Sniff-test,
with a Sniff-test compatible fork of zerocopy being maintained at

https://github.com/AlexanderPortland/zerocopy/tree/Sniff-test.



https://github.com/cognitive-engineering-lab/sniff-test
https://github.com/AlexanderPortland/zerocopy/tree/sniff-test

Evaluation:

The performance of Sniff-test is evaluated in two contexts: on the safety-critical zerocopy crate
from within the Rust ecosystem, and on in-house code examples that represent difficult patterns
it would encounter in practice. The former aims to ensure that high-quality, safe code can pass
‘the sniff test’ with minimal code changes, while the latter aims to show that the tool can catch
property violation early in development while being ergonomic to develop with.

Zerocopy
Zerocopy is a reputable Rust crate for zero-cost memory manipulation that is both easy and
correct. With prolific use in security-critical contexts and the mantra ‘We write unsafe so you

don't have to.’, they understandably take soundness incredibly seriously. The codebase uses a
combination of rigorous requirements for documentation on unsafe code, runtime testing with
Miri, and formal verification with Kani. Their rigorous documentation ethos results in a very
high-quality codebase, where safety comments are structured like proofs and there’s more lines
of comments than lines of code.

By all means, a codebase like this should pass the Sniff-test, so it's a good benchmark for
how difficult it is to get your high-quality code modified to fit the Sniff-test format.

To initially run Sniff-test, two main changes needed to be made to the codebase. First, traditional
comments (using // in Rust), had to be changed to doc comments (using /// in Rust), which was
a simple, methodical change that was done quickly with any find and replace tool. Then, all
function definitions must be lightly modified so that all obligations on callers of the function are
explicitly named, to allow us to properly check that callsites have considered them. The
codebase already implicitly used this structure, and often even had names they used to refer to
properties when justifying unsafe blocks, so changing the documentation for the 38 relevant
unsafe functions was not difficult. Since we’re currently using buzzword checking (see above),
callsites themselves do not require any changes.

When run on the zerocopy codebase for the safety property (@ commit e8eb595 consisting of
11k lines of Rust code), Sniff-test analyzes 2807 functions reachable from its public APl in just
over 4 seconds. Initially, the tool reported 90 errors, 85 of which were false positives. 54 of those
false positives were fixed through renaming 8 of the properties to be more consistent with what
they were referred to as in the code. The other 31 were fixed by recategorizing what was
thought to be safety requirements on callers as “safety invariants” guaranteed by the callee.

The remaining flagged errors included both of the codebase’s remaining undocumented safety
blocks that were known to the developers. | opened an upstream PR that attempts to document
them (zerocopy#2847). (The codebase also has numerous safety comments they deem subpar,
but none of those were detected as they’re lacking in citations and references, rather than
reasoning or consideration of code properties.)



https://github.com/google/zerocopy
https://doc.rust-lang.org/reference/comments.html#doc-comments
https://github.com/google/zerocopy/tree/e8eb59576a50076b0dcd493d48fbdcb7f23b3a40
https://github.com/google/zerocopy/issues/429
https://github.com/google/zerocopy/issues/429
https://github.com/google/zerocopy/pull/2847

The final three flagged errors were cases where the zerocopy developers seem to have omitted
certain obligations on the function they called. All three cases are very intrinsically tied to logic
and structures internal to their crate, so | have an ongoing effort to become more acquainted
with the code to determine whether this was due to assuming that the obligations were
obviously satisfied, or forgetting them. | suspect the latter, but want to be very thorough before
claiming that’s the case — either way, the solution would be to upstream a small change adding
those considerations to the relevant safety comments.

This shows that, not only is it feasible to run large codebases on Sniff-test, but the tool gives
quick, actionable feedback about how properties hold throughout.

In-house Testing

Sniff-test has a set of tests that check for common situations in which developers could forget to
document their code properties. Common cases include forgetting to document that an unsafe
operation happens with an argument to a function, documenting preconditions but forgetting to
use the unsafe keyword, or having documentation in common but difficult places to parse (e.g.
on a let statement that assigns to the output of an unsafe block). The current set of tests
unfortunately don’t test the fine-grained mode that was used to test zerocopy, and only require
that there be a safety comment rather than reasoning about their content, so this is a space for
improvement in the future.

Despite the potential for improvement in the future, work with these tests does show some
promise that it is simple to develop new codebases with Sniff-test, and that it's good at catching
common issues developers will make. (There were a few times while writing tests that | thought
the tool was spuriously failing only to realize after further review that | had simply been
overlooking a safety property.)

Next Steps (threats to validity I’d like to address in the future)

I'd like to continue expanding this project with a better call analysis that can more robustly
handle higher-order functions. For example, there’s a safe function in zerocopy that calls an
unsafe function, but from within the closure of a call to map. The safety of this call was clearly
underdocumented (although it has since been fixed in the upstream), but Sniff-test didn't detect
this as the call was within a higher order function that may not have been actually called.

I'd also like to add more machinery to check the correctness of dependencies instead of just
trusting that their documentation is accurate.


https://github.com/cognitive-engineering-lab/sniff-test/tree/main/tests
https://github.com/google/zerocopy/blob/151c20f91cb6cd75d5f1358ae5351ab50917dc41/src/pointer/ptr.rs#L1221-L1240

	Introduction: 
	Implementation: 
	Evaluation: 

