CSCI 1951Q Final Project: Contributing Changes to Wasmtime
Cranelift

Bisheshank C. Aryal, Edward Wibowo, James Hu

Summary

For our final project, we implemented a previously missing optimization in Cranelift, Wasmtime’s
compiler backend, that simplifies a redundant select + icmp instruction pattern in its intermediate
representation. Specifically, when a select instruction with constant operands is immediately
compared against those constants, the pattern can be collapsed into a single boolean operation.
Using Cranelift’s ISLE domain-specific langauge, we introduce four new rewrite rules that handle
equality and inequality comparisons and all constant orderings. Key challenges included ISLE’s
restriction on terminator instruction simplification, explicit boolean type requirements, and
managing similar pattern variations. The resulting solution preserves full semantic correctness, has
been validated through comprehensive testing, and is now integrated upstream in Wasmtime.

WebAssembly :

(WASM) Wasmtime Cra

nelift
We are here! \l/

Machine Code .. ‘B/ Cranelift IR
via JIT/AOT <——| Optimized CLIF [<«—— (CLIF)

Figure 1: WebAssembly compilation pipeline through Wasmtime showing the optimization target:
WASM bytecode is processed by Wasmtime runtime, compiled to Cranelift IR, optimized in ISLE,
and lowered to machine code.

Cranelift: Optimize out redundant select + icmp instructions #12135

Merged® cfallin merged 4 commits into i nce:main from ¢ n (53 days ago
] &

Figure 2: Our optimization was successfully merged into the Wasmtime codebase.



PR: wasmtime/pull/12135.

Original issue: wasmtime/issues/11578



https://github.com/bytecodealliance/wasmtime/pull/12135
https://github.com/bytecodealliance/wasmtime/issues/11578

Introduction

Our final project involves introducing a missing optimization in Cranelift, a compiler backend used
by Wasmtime. Wasmtime is a runtime for WebAssembly that leverages Cranelift to generate
machine code either at runtime (via JIT) or ahead-of-time.

Cranelift produces optimized machine code from a custom interemediate representation (Cranelift
IR). Here is an example of what this IR looks like in textual form:

function %non_icmp_inner(i64) -> i8 {
blockO(vO: i64):

vl = iconst.i64 6

v3 = iconst.i64 7

v4 = select vO, vl1, v3
v5 = icmp eq v4, vl
return v5

}

It is interesting to note that this textual form, known as CLIF, is primarily used for testing/
debugging purposes. The actual IR used by Wasmtime is represented as an in-memory data
structure. Cranelift’s goal is to transform this IR into fast, architecture-dependent machine code.
Doing so often requires IR-level mid-end optimization passes.

Cranelift uses a DSL called ISLE (Instruction Selection Lowering Expressions) to express both
lowering and optimization logic. ISLE consists of rules that can be thought of as pattern matching. A
unique feature of ISLE is that it is type-aware. Example types are IR Values and architecture-specific
Regs that correspond to Rust types. ISLE benefits from common type system wins like preserving
invariants via types: tracking “flag” registers in architecture-specific code happens with
ProducesFlags and ConsumesFlags typed values. For this project, we focused on mid-end
optimizations that take as input Cranelift IR and produces (optimized) Cranelift IR (rather than
machine code).

This project specifically aimed to create mid-end optimizations that were missing in Cranelift as
pointed out by wasmtime/issues/11578. This issue points out a potential optimization involving

icmp, select, and brif IR instructions.

For reference, icmp returns 1 if the comparison is true and 0 otherwise.' select returns the first
argument if its condition is truthy (not 0) and the second argument otherwise.

Specifically, in the following CLIF code:

function %a(i64) -> i64 {
blockO(v2: i64):
v3 = band _imm v2, -562949953421310
v4 = icmp_imm eq v3, O
v5 = iconst.i64 6
v6 = iconst.i64 7
v7 = select v4, v6, v5 ; v6 =7, v5 =6
v8 = icmp _imm eq v7, 6
brif v8, block2, blockl

blockl:
v9 = iconst.i64 100
jump block3(v9)

block2:

*The function can also return -1 for vector operations, but that is not in scope for this project.


https://cranelift.dev
https://wasmtime.dev
https://github.com/bytecodealliance/wasmtime/issues/11578

v1l0 = iconst.i64 101
jump block3(v10)

block3(v1ll: i64):
return vl1l

}

One may observe that the value of v8 is entirely dependent on the value of v4. That is, the value of
v8 depends on whether v7 is equal to 6, and the value of v7 is either equal to v6 = 7orv5 = 6
depending on v4. Crucially, since we know v7 is constrained to either be equal to 6 or 7, we can
deduce that v8 depends solely on v4.

Moreover, a further optimization may optimize away the branching if (brif) instruction by
leveraging yet another select instead. However, while we considered this approach, we chose to
focus on the former optimization due to difficulties involving simplifying terminating instructions
that may modify the control-flow graph. Our attempts are discussed in the Implementation section.



Implementation

Our implementation consists of ISLE code. At a high level, we target icmp eq (equals comparison)
and icmp ne (not equals comparison) instructions. We consider the instruction icmp eq, x, k1,
where x is any Value and k1 is a known constant value. If we see the value of x comes from the
instruction select y, k1, k2, we know that these two instructions together are equivalent to the
inner condition y. That is, icmp eq, x, k1 is completely determined by y, meaning we can avoid a
redundant select. However, this is only true if k1 != k2 because otherwise an instruction like
select y, k1, k1 would be optimized by constant propagation.

Prior to reaching the aforementioned implementation, we ran into challenges involving
optimizations on brif, handling non-boolean select inner conditions, and dealing with similar icmp
setups.

Challenge 1: The brif Instruction

In CLIF, the brif instruction jumps to one of two basic blocks depending on a condition value. The
original issue report includes a reproducible test case where the final optimization may affect a brif
instruction by swapping the order of the target basic blocks based on the structure of the select and
icmp. Our first idea was to target the brif instruction in ISLE as the instruction pattern for our
optimization. That is, we would find brif instructions that are conditioned on icmp + select
instructions and coalesce the blocks into simpler instructions. However, we found that the simplify
rules we wrote on brif did not propogate through. After some debugging, we discovered the
following limitation in the ISLE source code:

/// Find the best simplification of the given skeleton instruction, if any,

/// by consulting our “simplify_skeleton™ ISLE rules.

fn simplify_skeleton_inst(&mut self, inst: Inst) —> Option<SkeletonInstSimplification> {
// We cannot currently simplify terminators, or simplify into
// terminators. Anything that could change the control-flow graph is off
// limits.

Figure 3: Code snippet showing restrictions on ISLE simplifying terminators.

Further details can be found in the corresponding code comments [1]. In summary, it is difficult to
simplify terminating instructions (such as brif) because they modify the control-flow graph.
Modifying the control-flow graph introduces a host of problems. For example, it may change the
domination relation between blocks, which may in turn invalidate uses of some variables.

Hence, we avoided optimizations on brif. We noticed that any condition that follows the icmp +
select pattern described above may be subject to our optimization: the brif instruction is not a
required pattern-match condition. Our resulting optimization targets icmp on the result of a select
to simplify to a boolean value without modifying control flow.

Challenge 2: Handling Non-Boolean select Inner Conditions

CLIF’s icmp instruction has the concept of “truthiness” where 0 is false and anything else is true.
Thus, a naive optimization of replacing the icmp + select combo with the select’s inner condition
fails in cases such as Listing 1 when the inner condition can be any value, not just 0 or 1.



function %a(i64) -> i8 {

block0(vO: i64):
vl = select vO, 100, O
v2 = icmp_imm eq v1, 100
return v2

}

Listing 1: Test case that breaks naive optimization. The inner condition is v@ which can be any 64-
bit integer.

A naive optimization rewrites this to Listing 2. However, this transformation loses the “casting”
effect of the icmp + select instruction combo and results in invalid IR. More concretely, the
unoptimized icmp instruction will “cast” the potentially truthy inner condition of select to an i8
boolean (0 or 1). We account for this by inserting an icmp against 0, replicating the “cast”. This gives
us the correct optimization in Listing 3.

function %a(i64) -> i8 {
blockO(vO: i64):
return vo

}

Listing 2: Naive optimization results in invalid IR: v0, an 164, does not match the return type of i8.

function %a(i64) -> i8 {
blockO(v0O: i64):
vl = icmp_imm ne vO, 0
return vl

}

Listing 3: Inserting an icmp_imm ne .. 0 to “cast” the inner condition of select into a boolean.

Challenge 3: Similar icmp Setups

Our first intuition was to focus on matching on instructions of the form icmp eq, x, k1 where x =
select y, k1, k2.

However, we quickly noticed that we can apply similar optimizations on

« icmp eq, x, k2:which compares x with k2 instead of k1.

« icmp ne, x, kl1:which uses ne instead of eq.

« icmp ne, x, k2:which uses ne instead of eq and compares x with k2 instead of k1.

Following careful casework, we determined icmp eq, x, k2 and x = icmp ne, y, k1 simplify to
the negation of the corresponding select instruction’s condition. We noted that constant
propagation automatically pushes constant terms leftwards, meaning analogous cases such as icmp
eq, k1, xetc. (with k1 on the left-hand side) are automatically captured.

Simplify Rules
In the end, we produced four simplifying rewrite rules to Cranelift. One of the four is listed below:

(rule (simplify (eq _
(select select ty inner cond
(iconst u _ K1)
(iconst u _ k2))
(iconst u _ kl1)))
(if-let false (u64_eq k1l k2))
(ne select ty inner_cond (iconst u select ty 0)))

Listing 4: One of the four simplifying rewrite rules we introduced written in ISLE.



Firstly, Listing 4 matches on instructions of the form icmp eq, x, k1l where x = select y, k1,
k2. Then, the if-let check ensures that k1 !'= k2. Finally, it replaces it with icmp ne, y, 0,
avoiding a select instruction.



Evaluation

Overall, we implemented four simplifying rewrite rules that optimized select + brif. To ensure our
rules do not break existing optimizations, we developed additional tests that ensure our
optimizations propagate correctly and also do not change program semantics.

Test Results and Validation

We leverage two types of tests:

1. Semantic preservation: we wrote tests that evaluated the optimized and non-optimized versions
of functions to ensure they returned the same results.

2. Optimization correctness: we used snapshot testing to ensure our optimization produces the
expected IR transformations.

While looking through the Cranelift codebase, we were surprised to see that many existing
optimizations are only tested via snapshot testing. We wanted to ensure our changes do not
introduce silent bugs, so we were motivated to include semantic preservation tests prior to

implementing our optimization.

For example, the following is a semantic preservation test we wrote:

test interpret

test run

set opt_level=none
target x86 64
target aarch64

set opt level=speed

function %non_icmp_inner(i64) -> i8 {
blockd(vO: i64):

vl = iconst.i64 6

v3 iconst.i64 7

v4 select vO, v1, v3

v5 icmp eq v4, vl

return v5

; run: %non_icmp _inner(0) == 0
; run: %snon_icmp inner(l) == 1
; run: %non_icmp inner(5) == 1
Listing 5: Semantic preservation test that runs the function

This test is run twice, once with optimizations disabled and once with optimizations enabled. The
run directives ensure that both versions of the function return the same results for various inputs.

The following example is an optimization correctness test:



function %a(i64) -> i8 {
blockO(vO: i64):
vl = iconst.i64 6

v3 = iconst.i64 7

v4 = select vO, vl1, v3
v5 = icmp eq v4, vl
return v5

; check: function %a(i64) -> i8 fast {
; check: blockO(vO: i64):

; nextln: v6 = iconst.i64 0

; nextln: v7 = icmp ne vO, v6 ; vb6 =0
; nextln: return v7

; nextln: }

Listing 6: Optimization correctness test that checks the optimized IR.

This test simply ensures that the optimized IR matches the expected output after applying our
optimization.

Some architectures like x86 have optimizations for comparing against 0 vs. other values. [2]
However, we have not measured performance impact.

Result

We submitted a pull request to the Wasmtime codebase which can be viewed at wasmtime/
pull/12135. The pull request passed all CI checks and was eventually merged into the main codebase.
As a result, the original issue wasmtime/issues/11578 was closed.

Future Work

While our optimization successfully reduces IR size via removing redundant select instructions, we
left out an additional optimization involving brif instructions due to the challenges discussed
earlier.

Future work may involve overcoming the challenges of modifying control-flow graph altering
instructions in ISLE. This may involve deeper changes as discussed in the original issue thread.

This one is considerably harder: it requires support for seeing through blockparams during
mid-end opts, which has very subtle interactions with the single-pass acyclic nature of our
rewrite system; and it requires editing the control-flow graph, which also has complex
interactions with the way that the rewrite pass works. At some point we’d like to support this,
but it would require pretty deep investment from core Cranelift folks to think it through.

— cfallin


https://github.com/bytecodealliance/wasmtime/pull/12135
https://github.com/bytecodealliance/wasmtime/pull/12135
https://github.com/bytecodealliance/wasmtime/issues/11578
https://github.com/bytecodealliance/wasmtime/issues/11578

Bibliography
[1] Bytecode Alliance, “wasmtime: cranelift/codegen/src/egraph.rs” [Online]. Available: https://

github.com/bytecodealliance/wasmtime/blob/85eed831c029¢76241a83fa61f04be131f9f14b2
cranelift/codegen/src/egraph.rs#1.524

[2] “Intel® 64 and [A-32 Architectures Optimization Reference Manual,” vol. 1, no. 248966-48. Aug.
2023. [Online]. Available: https://www.intel.com/content/www/us/en/content-details/671488/
intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html


https://github.com/bytecodealliance/wasmtime/blob/85eed831c029e76241a83fa61f04be131f9f14b2/cranelift/codegen/src/egraph.rs#L524
https://github.com/bytecodealliance/wasmtime/blob/85eed831c029e76241a83fa61f04be131f9f14b2/cranelift/codegen/src/egraph.rs#L524
https://github.com/bytecodealliance/wasmtime/blob/85eed831c029e76241a83fa61f04be131f9f14b2/cranelift/codegen/src/egraph.rs#L524
https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html

	Summary
	Introduction
	Implementation
	Challenge 1: The brif Instruction
	Challenge 2: Handling Non-Boolean select Inner Conditions
	Challenge 3: Similar icmp Setups
	Simplify Rules

	Evaluation
	Test Results and Validation
	Result
	Future Work

	Bibliography

