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Overview: Escape-time fractals such as IFS Julia sets are a demanding test for differentiable rendering. Each pixel is 
generated by iterating a nonlinear map with parameters θ until an orbit escapes or a maximum iteration is reached. As θ 
changes, most pixels do not move until a trajectory crosses the escape threshold one step earlier or later, abruptly 
switching bands or flipping from “inside” to “outside.” The image is therefore almost piecewise constant in θ with sharp, 
fractal discontinuities, and standard reverse-mode automatic differentiation (AD) mostly sees zero or misleading gradients, 
making inverse parameter recovery fragile. 

Goal: Recover the parameters of an IFS Julia set from a target image using gradient-based optimization, without 
smoothing away the hard control-flow decisions that define the fractal. 

Method: We adopt the discontinuity-aware sampling approach from “Automatic Sampling for Discontinuities in 
Differentiable Shaders” and implement it in Slang using [Disc]. 

● The escape condition in the renderer is annotated with [Disc].
● The Slang code is parsed in Python (via TreeSitter), where we build a control-flow graph and apply the [Disc]

program transformation around that branch.
● The transformed code uses Monte Carlo “segment snapping” to sample across the decision boundary, evaluate

both sides of the branch, and estimate how small changes in θ would flip control flow.
● Compiled with SlangTorch, this becomes a differentiable PyTorch module, and we optimize θ with Adam on an

image-space loss to the target.

The result is a control-flow–sensitive, piecewise gradient that explicitly captures how moving the escape boundary 
changes the image. 

Results: Naive AD through the escape-time renderer produces gradients that vanish away from the fractal boundary and 
cause optimization runs to plateau at high error or become unstable when the escape indicator is softened; reconstructions 
typically miss fine boundary structure. 

With [Disc] discontinuity-aware sampling: 

● Gradients reflect how θ shifts the escape-time boundary.
● Optimization converges more reliably to low loss.
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Introduction 

We aim to optimize parameters of shape programs containing hard branches. Existing AD and 
image-space losses often fail because gradients vanish or point in misleading directions when 
small parameter changes cause discontinuous structural changes. We adopt the 
discontinuity-aware sampling transformation from X and implement it in Slang using [Disc], 
enabling piecewise gradient estimation across decision boundaries. Concretely, given a target 
IFS Julia set image, we want to recover its underlying parameters via gradient-based 
optimization. 

Differentiable optimization is a rich area which enables many applications. Of particular 
interest is differentiable rendering with an eye towards solving inverse problems in graphics to 
optimize shapes or add details to them. A classic limitation of this line of work is dealing with 
discontinuities, namely, how to differentiate through discontinuities. The way around this is by 
handling the dirac delta (elaborated on here) in some way, some recent work focuses on 
integrating the dirac delta to provide a piece-wise derivative. Specifically there is recent work 
described in “Automatic Sampling for Discontinuities in Differentiable Shaders” which enabled 
differentiating through hard decision boundaries in CSG tasks, voronoi partition towards targets, 
etc. In this work we demonstrate a new application for differentiably optimizing parameters of a 
well-known IFS Julia set fractal (a subset of Mandelbrot), a task which is fragile and difficult to 
optimize due to the inherent chaotic geometry of fractals with traditional approaches, such as 
with naive auto-diff and only image space gradients. 

We had 3 high level goals with this work exploring the space of differentiable program 
optimization: 

1. To evaluate / understand trade offs by using the segment snapping mechanism
proposed by Automatic Sampling for Discontinuities in Differentiable Shaders1

paper
2. To evaluate whether this would help get “base sculpts” for 3D geometry to

manipulate and / or enable addition of surface surface details / refinement via
inverse CSG

3. Bridge the gap between CSCI1951Q course material and shape program
analysis (ie optimizing DSLs) while learning more about the advanced features
built-into Slang

We interpret discontinuity-aware differentiation as a control-flow sensitive extension of auto-diff. 
Instead of differentiating only along the executed CFG path, the [Disc] transformation estimates 
how outputs change under infinitesimal perturbations that alter control-flow decisions. 

https://github.com/bmahlbrand/auto_disc_sample
https://shader-slang.org
https://alok.github.io/2024/09/28/discontinuous-derivative/


To recap, in an IFS Julia-style renderer each pixel is generated by repeatedly applying a 
nonlinear map to a complex value. Starting from an initial point, we iterate this map with some 
parameter vector theta until either the orbit escapes beyond a fixed radius or we hit a maximum 
number of iterations. The final image is therefore driven by an “escape-time” indicator: did the 
orbit escape, and if so, on which iteration? As a function of theta, this mapping is highly 
non-smooth. Tiny changes in theta can make a trajectory cross the escape threshold one step 
earlier or later, abruptly flipping a pixel from “inside” to “outside” the set or moving it to a different 
color band. At high resolution, these branch flips accumulate along a fractal boundary, so the 
rendered image becomes essentially piecewise constant with sharp discontinuities that follow 
the geometry of the set. Standard reverse-mode automatic differentiation only follows the 
branch decisions actually taken during a forward pass, so it either sees zero gradient almost 
everywhere (because the control flow does not change under small perturbations) or misses the 
Dirac-delta-like contribution when a branch flips. As a result, naive image-space losses 
combined with plain AD tend to produce gradients that either vanish or push parameters in 
unhelpful directions, making inverse parameter recovery fragile. 

Implementation 

The system that we’ve worked on to enable CFG dependency analysis scaffolded atop of an 
automatic differentiation, PyTorch. This is a more generalized vectorized differentiable 
programming framework (Jax is a newer one which aims to give you more flexibility) that 
leverage GPUs in order to efficiently calculate gradients via the chain rule in order to optimize 
complex auto-diff graphs with respect to some objective function. This is often as simple as an 
L2 loss (mean-squared error) between a ground truth artifact and a generated output from some 
differentiable process. These systems are not capable of performing differentiation through 
discontinuities to handle control flow branches - traditionally what’s been anecdotally observed 
is a tendency to swap if else branches for lerps or other clever smooth approximations of the 
branch which are approximations and thus soft / fuzzy gradients, not the exact hard decision 
boundary. 

We leverage source code privately shared by the author of “Automatic Sampling for 
Discontinuities in Differentiable Shaders”. This roughly follows the following high level 
architecture – parse a Slang shader with a decision boundary (if else branch) annotated by 
[Disc] to an AST in Python via TreeSitter, build a control flow graph to have the relationships 



between branches - Belhe et al’s system requires branch indexing to support piecewise 
sampling. Essentially perform a monte carlo sampling of segments - to drive evaluating lines 
across F(x) and G(x) [if and else] - the discontinuities between branching statements (integral 
over dirac delta) through importance sampling. You transform the Slang+[Disc] AST according 
to the piecewise constant strategy they're using to make it 
differentiable and thus compatible with autodiff - you output the 
transformation as a new Slang (around this [Disc] tag) program. 
You then take this compiled Slang shader, and make a 
differentiable module via SlangTorch and drop into a “traditional” 
PyTorch optimization loop with Adam (adaptive momentum) to 
minimize the error between the IFS fractal evaluated at given 
parameters and the optimized parameters. 

Building on someone else’s unpolished unreleased 
research code presented its own set of challenges, but largely the 
program transformation code was relatively painless to use after a 
week or so of experimenting (and getting dependencies 
reproducible in a pyproject.toml file). Towards the end of getting 
some smooth base meshes to add details to, we attempted 
implementing Generalized Cylindrical Decomposition3 [GCD] on 
predefined skeletons: given a 3D mesh, recover a set of tapered cylinders that approximate the 
input. The skeletons were exported from sampling a user-drawn curve over the mesh. One core 
issue in this pipeline is that the sampling mechanism does not reject overlapping segments, 

which confounds the optimization and leads to low-quality fits even when the optimization 
technically converges. We then tried to discover the skeleton itself via optimization, following the 
GCD formulation. In practice, reliably estimating rotational symmetry axes (ROSA) of the mesh 
point cloud was the main failure mode; the difficulty of robustly detecting these symmetries 
dominated any benefit from discontinuity-aware sampling. We ultimately dropped the automatic 
sampling pipeline for this 3D setting and instead built a separate approach that recovers a set of 
spheres (e.g., 50 primitives - middle) that best approximate the mesh (left) and then wraps a soft 
skin over them in the spirit of Dynamic Skeletonization Via Variational Medial Axis Sampling2. 
The far right reconstruction in our example above is not yet a perfectly smooth base mesh—the 
spheres still bulge—but it is the raw output of a soft-min union followed by marching cubes. For 

https://github.com/shader-slang/slang-torch


this formulation of coarse 3D reconstruction, hard decision boundaries and the [Disc] machinery 
were not the most effective or accessible tools. 

This 3D detour, while useful for stress-testing the 
tooling, suggested that discontinuity-aware sampling is most 
valuable when branch-induced discontinuities are the central 
difficulty rather than one of several secondary issues (such as 
overlapping segments or symmetry detection). We therefore 
pivoted our main application to a domain where sharp 
decision boundaries are intrinsic to the definition of the object: 
IFS Julia set fractals. In the remainder of this work, we focus 
on using the [Disc] transformation to obtain informative 
gradients for inverse parameter optimization of these fractals, a 
use case not covered in the original “Automatic Sampling for 
Discontinuities in Differentiable Shaders” paper. 

Evaluation 

Why focus on IFS fractals? As discussed above, the escape-time construction makes them a 
compact but challenging stress test for gradient-based inverse optimization – small parameter 
changes often have no effect until a branch flips, at which point the image can change abruptly. 
Empirically, this shows up very clearly. A naive baseline that differentiates through the shader 
with standard automatic differentiation and optimizes an image-space MSE loss systematically 
fails to recover nontrivial targets. In our experiments, such runs either plateau at high error 
(because gradients vanish away from the boundary), become numerically unstable when we 
soften the indicator, or wander in parameter space without reliably improving the reconstruction. 
This behavior makes IFS fractal parameter recovery a good candidate for testing whether 
discontinuity-aware sampling actually yields more informative, piecewise gradients in practice. 



We tag the escape condition as the discontinuity to differentiate through. Admittedly we 
have no comparisons to other methods aside from image space AD, but the implementation 
contains naive autodiff with no interesting results since the gradients flatline and fail to find 
meaningful directions for the cases we tried (shown in the figures above), where using the [Disc] 
gradients to drive the optimization resulted in convergence across a scale curriculum, where we 
progressively introduce more iterations / complexity to the fractal (a toy problem to be sure). 
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