Assignment 5: Dynamism

Due: 11/13/25 at 11:59pm (NO EXTENSIONS!)
Submission link: https://www.gradescope.com/courses/1107485/assignments/7080759

In this assignment, you will implement techniques for dynamic analysis of Rice programs. The
main task is be to implement a symbolic executor for Rice, and a bonus task is to implement type
specialization for structs.

5a: Symbolic Execution (100 points)

Motivation

The goal of symbolic execution is to use SMT solvers to identify inputs which cause an assertion
failure. For example, if you write this function in Rice:

#[symex]
fn example(x: [int]) {
if x[e] > 0 {
assert(x[1] - x[@] < 10)
3
1

Then running symbolic execution should produce an error like this:

$ rice example.rice symex

Error: x detected assertion failure by symbolic execution
—[example.rice:4:5]

3 if x[e]l > o {

4 assert(x[1] - x[0] < 10)

— failing assertion

5 }

help: x = (store ((as const (Array Int Int)) 7730) @ 7720)

Whereas running on a function like this:
#[symex]
fn example(x: [int]) {
if x[0] > 0 {
assert(x[0] + 1 > 1)
3
}

Then symbolic execution should indicate no issues:
$ rice example.rice symex

No assertion failures detected.
Specification

Symbolic execution should be implemented as a new ‘symex‘ subcommand for the Rice compiler,
which you can add to the Command enum in main.rs. When running in symbolic execution mode, the

https://www.gradescope.com/courses/1107485/assignments/7080759

compiler should lower the input program to bytecode, and then symbolically execute all functions
marked as #[symex]. For each such marked function, if there exists an input that would cause an
assertion failure when executed, then the Rice compiler should emit an error and exit.

Recall from lecture that a symbolic executor is an interpreter which accumulates symbolic rather
than concrete values. While a concrete interpreter tracks a single program configuration, a symbolic
executor tracks multiple program configurations as they branch off at conditional jumps. Your
solution will have a similar look and feel to the interpreter in rt/mod.rs, except it will use symbolic
values instead of Wasm values, and you will have to implement your own heap instead of relying
on the Wasmtime garbage collector.

Formally, the symbolic executor should operate over the domain of symbolic expressions supported
by the Z3 solver, which we model as follows:

SymVar «

SymExpr s i=c| a| s ®s2| (s1,...,5n) | 5.3 | update-field(sy, i, s2)
| [s] | s1[s2] | update-index(s1, s2, $3)

SymBool ¢ € SymExpr

Symbolic variables are “fresh” variables which could be any value of a given type. Symbolic
expressions, like normal expressions, can be constants, symbolic variables, or binary operations.
The last line indicates that ¢ is an alias for s, but used specifically to represent symbolic expressions
of boolean type.

Symbolic expressions can also be tuples and arrays, but in a different manner than Rice tuples
and arrays. Tuples are constructed and read as in Rice, but updated in an effect-free way via the
update-field operation. Arrays are constructed in an length-agnostic manner, so [s] means “the
constant array where every index maps to s”. Indexing works as usual, and update-index is an
effect-free update analogous to tuples. Note in Z3 parlance, tuples are datatypes and arrays are
arrays (not sequences).

You will implement symbolic execution for the entirety of the Rice language with the exception of
closures, structs, and interfaces. Formally, that includes the following bytecode:

Place p ::= x| p.i | p1[p2]
Rvalue rv :=c | p | p1 @ p2 | f(p¥) | alloc(p®)
Instruction Z ::= p = rv | goto i | if p goto iy else is | return p
Function g ::=fn f(2™) { Z* }
Program P € Var — Function

A function is symbolically executed within a stack frame that contains the function, its locals, and
a program counter:

Locals 3 € Var — SymExpr
Frame F' ::= {func g;locals ¥; pc n}

Note that the locals are symbolic expressions rather than concrete values.

https://microsoft.github.io/z3guide/docs/logic/intro

An abstract configuration then consists of a program, a stack of frames, a global heap, and a path
condition:

Heap H € N — SymExpr
Stack S ::= F*
AbsConfig C ::= {prog P;stack S;heap H;path ¢}

The heap is represented as a mapping from pointers (natural numbers) to symbolic expressions.
The path condition represents the set of accumulated facts deduced from conditional jumps.

The rules for implementing symbolic execution are described on the final page of this handout. It
describes a few key judgments:

C £> C’: the abstract configuration C steps to a new configuration C’ for the instruction
Z. Similar to the WebAssembly evaluation rules, only elements of the configuration that are
relevant to a given rule are listed on each side of the arrow. All other elements are assumed
to be unchanged.

Y:HFrvl s = H': the rvalue rv evalutes to the symbolic expression s in the context of
locals ¥ and heap H, producing an updated heap H’. Note that when rv is guaranteed not
to be alloc, we use the shorthand ¥; H F rv |} s because H cannot be updated.

Y;HFp=s=Y;H the symbolic expression s is assigned to the place p in the context of
locals ¥ and heap H, producing updated locals ¥’ and an updated heap H'.

A few final notes on cases you do or don’t need to handle:

You do not need to handle the case of abstract functions, i.e., symbolically executing a function
that takes as input a function of unknown value.

You do need to handle the case of abstract allocations, i.e., symbolically executing a function
that takes as input an array or tuple. You can make the simplifying assumption that all input
allocations do not alias, i.e., each input allocation takes on a fresh abstract value.

You only need to handle assertion failures, and not other kinds of program crashes such as
array out-of-bounds accesses.

You need to handle the possibility of infinite loops. Each configuration should track the num-
ber of steps it has executed so far. Your symex subcommand should take a --max-steps <N>
flag such that if a configuration exceeds N steps, then it is discarded by the runtime.

You do not need to do anything clever in terms of prioritizing which configuration to run.
The reference solution simply uses a queue.

Implementation Tips

You will first need to install Z3. I recommend using version 4.14.1 or newer. I encountered issues
using older versions such as the one distributed in the libz3-dev Debian package. I recommend
the following:

Mac: brew install z3

e Linux or Windows: Download the Github release and install it at an appropriate spot on
your system, like /usr/local. Note that the release confusingly puts shared libraries in bin
so you may need to move 1ibz3.so into lib.

e NixOS: good luck and godspeed!

Next, you will need to add the Z3 bindings to your source. That’s as easy as cargo add z3, then
check out the Z3 binding documentation. Depending on where you installed Z3, you might need to
communicate to Rust where to find either the Z3 header files or Z3 dynamic library. See the Cargo
documentation for how to put this information into your build script. Note that you should not
use the .cargo/config.toml solution described in the Z3 crate documentation because it may not
work with the autograder.

Finally, a few implementation tips:

e The type signature for stepping a configuration in the reference codebase is:

fn step(mut self) -> Result<SmallVec<[Self; 2]1>>;

That is, stepping consumes ownership of the configuration, and returns a result which errors
upon an assertion failure. In the success case, it returns a small vector which is either just a
modified version of self or self and a clone in the case of a fork.

e The reference compiler uses the Z3 Solver type to implement the path condition ¢, and the
73 Dynamic type to implement all other symbolic expressions.

e 73 symbolic constants are convertible to Rust constants. For example, if x is a Dynamic and
an integer constant, then you can do x.as_int().unwrap().as_u64().unwrap() to get a u64
out.

Grading

Your implementation will be evaluated on a set of test cases which should either pass (there are no
failing inputs) or fail (there are failing inputs). The set of test cases will be provided on the course
website.

https://github.com/Z3Prover/z3/releases/tag/z3-4.14.1
https://docs.rs/z3/latest/z3/
https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script
https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script

5b: Monomorphization (10 points, extra credit)

As an optional portion of this assignment, you will implement a system for adaptively optimizing
and JIT compiling a Rice program to eliminate overhead from dynamic dispatch.

Motivation

Consider a Rice library for vectors with a Vec interface, implementations for types like Vec2, and
generic functions like a vector magnitude:

1 interface Vec {

2 fn get(Self, int) -> float;
3 fn dims(Self) -> int;

Lo

¢ struct Vec2(float, float);

s impl Vec for Vec2 {
9 // ...
0}

12 fn mag(v: @Vec) -> float {

13 let i = 0 in

14 let n = 0. in

15 while i < v.dims() {

16 n:=n+ v.get(i) * v.get(i);
17 i::=1+1

18 3

19 sqrt(n)

20 3

A library client might use these functions in a hot loop to compute the magnitude of many vectors,
like so:

1 fn main() {
2 let N = 1000000 in
3
1

let pts = [|new Vec2(0., 0.) as @Vec; N|] in
let i = 0 in

5 while i < N {

6 pts[i] := new Vec2(i as float, i as float) as @Vec;

7 i =1+ 1

8 3

9

10 i:=09;

11 while i < N {

12 mag(pts[il);

13 i =1+ 1

14 }

15}

Running this program under an optimized build of the reference Rice compiler at -01 takes about
13 seconds on my M1 Macbook Pro. If I change this program to eliminate the dynamic dispatch
and call a specialized version of mag like this:

1
2
3

fn mag_vec2(v: Vec2) -> float {
sgrt(v.0 *x v.0 + v.1 *x v.1)
3

Then the program takes about 4.5 seconds, nearly 3 times faster. Your challenge is to implement
an adaptive optimization to generate and patch in functions like mag_vec2 at runtime.

Specification
This optimization has three main components:

1. Type profiling: at each call site, for each argument which is an interface object, track
whether it is consistently called with an object of the same struct type. Note that this
requires extending the runtime representation of interface objects to contain some kind of
type ID to specify which struct generated the object.

2. Specialization: after identifying that a function is consistently called with a particular
type, then generate the bytecode for that function with specialized arguments, and run op-
timizations on the function. Your optimizations must include inlining known functions and
optionally unrolling loops with constant bounds.

3. Patching: with a specialized version of the function call, the runtime should save this function
and remember to invoke it on subsequent calls only if future arguments have the expected

type.

Grading

You should take an example like the Vec interface above and demonstrate that your runtime achieves
at least a 2x speedup using these optimizations. You can compare the optimizations by, for instance,
having one call to mag which uses a heterogeneous array of interleaved Vec2 and Vec3 types versus
a homogeneous array of Vec3 types.

If you implement this optimization, then leave instructions in your README for how to run your
compiler and observe the speedup. Send Will a note indicating that you attempted the extra credit
portion of this assignment, and he will inspect your implementation and evaluation.

SHbErm | s=H S H Fp=s=Y:H"

(S, {Zsn});H <=

, ” E-STMT goto / E-Goto
(S AX s n+1}); H (S, {no}) (S, {n'})

;HEpl s o =¢pNs ¢’ sAT

i p gOtO ny else n E II 'TRUE
1 2

(S, {E}); Hino

X;HEpl s ¢ =¢N-s ¢’ SAT

if p goto ny else no ; E-Ir-FALSE
(S AZ}); Hs dino (S AZ}); Hs ¢'sme

Y HbEpilbsi P(f)=fn (@){P} ¥y ={(z—s)"}

E-C
p=f(p*) ALL
— 5

P; (S, {¥1});H P; (S, {21}, {39; P;pc = 0;¢ = true}); H
Yo H I pret | 5 g[n] = “pdst = f(p*)” Yi; HE pygst = s = Ell;Hl

return pret
(S, {g: T1;n}, {Do}); H 2% (S, {g; Zh;n+1}); H’

E-RETURN

Z;HI—rUlL5:>H/‘

SiHEpln H(n)=s
——— E-CoONSsT E-Var - - E-FIELD
SsHEclc S:HE x| X(x) S:iHEpi | s

SiHEpi n H(n)=s1 SiHEpo | so
E-INDEX
35 H &= p1[p2] I s1(s2]
YsHEp) s1 X HEpaloso
E-Binopr

YiHEpr @ p2ll s1® s

S;HEpl s n=|H|

E-ALLOC-ARRAY
Y H F allocaray (p; =) § n = H[n — [s]]

E;Hl—piUSi n:\H\
¥ H F allocyypie(p15 - - - 50n) 4 n = Hln — (s15...5 5p)]

E-AvLLoc-TUPLE

E;Hl—p:s:E’;H"

E-ASSIGN-VAR
Y;.HrEz=s= Xz~ s;)H
S;HEpUn H(n)zstuple

- - - E-AssiGN-FIELD
Y H & pi = syalue = 2; H[n — update-field(styple, 7, Svalue)]

YsHEprdn H(?’L) = Sarray X5 H F p2) Sindex

- E-ASSIGN-INDEX
X H Epr [pQ] = Svalue = X; H[n = Update'mdex(sarraw Sindexs Svalue

