
Assignment 4: Flows
Due: 10/30/25 at 11:59pm

In this assignment, you will solve a few problems about the theoretical properties of dataflow
analysis. You will also implement a taint analysis based on the information flow techniques discussed
in class.

4a: Dataflow Theory (25 points)

Submission link: https://www.gradescope.com/courses/1107485/assignments/6981233

Problem 1: Lattices (10 points)

A partial order ⊑ on a set L is a binary relation that is reflexive, transitive and anti-symmetric.
For some x, y ∈ L, x ⊔ y is the “join” or least-upper-bound of x and y wrt the partial order. More
precisely, if x ⊔ y = z then:

1. x and y are less than z, i.e., x ⊑ z ∧ y ⊑ z

2. z is smaller than everything larger than both x and y, i.e., x ⊑ w ∧ y ⊑ w =⇒ z ⊑ w.

L is a join-semilattice if x ⊔ y is defined for all x, y ∈ L.

In our analyses, we have often taken lattices like the zero/nonzero lattice and put them into a
dictionary mapping variables to lattice elements. This dictionary is, itself, a lattice. More formally,
the map lattice M is defined as a function K → L over a set of keys K and a value lattice L.

Define a partial order on M and a join function that models how we have implemented the map
lattice for dataflow analysis. Prove that if L is a join-semilattice, then M is a join-semilattice.

Problem 2: Termination (5 points)

Recall our constant analysis where σ ∈ M with K = Var and L = {⊥,⊤} ∪ Const. Consider the
transfer function for constant analysis over binary operators:

f(x = y ⊕ z, σ) = σ

x 7→


⊥ if σ[y] = ⊥ ∨ σ[z] = ⊥
⊤ if σ[y] = ⊤ ∨ σ[z] = ⊤
σ[y]⊕ σ[z] otherwise




Prove that this case of the transfer function is monotonic, i.e., σin
1 ⊑ σin

2 =⇒ σout
1 ⊑ σout

2 .

Problem 3: Soundness (10 points)

A dataflow analysis computes an abstract state σ ∈ AbsState for each instruction in a bytecode
program, where AbsState is a lattice. An analysis is sound with respect to an abstraction function
α : Configuration → AbsState if for all programs P , for all traces T arising from P , and for all
configurations Ci ∈ T , then α(Ci) ⊑ σin

Ci.pc
. In other words, the abstract state for the current

instruction is a sound approximation of the abstraction of the current state. The syntax and
semantics for the bytecode and configurations are given in Figure 1 and Figure 2.

https://www.gradescope.com/courses/1107485/assignments/6981233

A dataflow analysis is implemented with a transfer function f : Instr × AbsState → AbsState. To
prove that an analysis is sound wrt α, we will need to prove that the transfer function correctly
updates the abstract state. More formally, an analysis is locally sound wrt α under the following
conditions. Given a configuration C and an abstract state σin, assume σin approximates C, i.e.,
α(C) ⊑ σin. Next, assume C ↪→ C ′. Finally, we must show that σout approximates C ′, i.e.,
α(C ′) ⊑ σout where σout = f(C.prog[C.pc], σin).

Constant analysis should be sound wrt the abstraction function:

α(C) =

{{
C.locals[x] if x ∈ dom(C.locals)
⊥ otherwise

}
| x ∈ Var

}
Prove that the binary operator case of the transfer function is locally sound wrt α.

4b: Taint Analysis (75 points)

Submission link: https://www.gradescope.com/courses/1107485/assignments/6981243

Motivation

The goal of taint analysis is to identify information flows from secure sources to insecure sinks.
For this assignment, a secure source is data returned from a function marked #[secure] and an
insecure sink is the function println. For example, here is a safe use of secure information:

1 #[secure] fn secure() -> int { 0 }
2

3 fn main() {
4 let p = secure() in
5 if p == 0 {
6 // do secure things...
7 };
8 println!("Done!")
9 }

The compiler should allow the program above to execute. However, the compiler should reject
programs with explicit flows, like this:

1 fn main() {
2 let p = secure() in
3 println(int_to_string(p))
4 }

And it should reject programs with implicit flows, like this:

1 fn main() {
2 let p = secure() in
3 if p == 0 {
4 println("Done!")
5 }
6 }

Specification

To start, you should call into your taint analysis from the function bc::analyze. Your taint
analysis should be an interprocedural dataflow analysis which is flow-sensitive, field-sensitive, and
context-sensitive. Flow-sensitivity means this program should pass:

1 fn main() {
2 let p = secure() in
3 p := 0;
4 println(int_to_string(p))
5 }

Field-sensitivity means this program should pass:

1 fn main() {
2 let p = (0, secure()) in
3 println(int_to_string(p.0))
4 }

https://www.gradescope.com/courses/1107485/assignments/6981243

Context-sensitivity means this program should pass:

1 fn id(x: int) -> int { x }
2

3 fn main() {
4 let p1 = id(secure()) in
5 let p2 = id(0) in
6 println(int_to_string(p2))
7 }

Handling pointers

Your analysis should reuse and build upon the pointer analysis you implemented for Assignment 3.
You do not need to make your pointer analysis interprocedural1. When encountering a function
call, your pointer analysis should assume the worst: all reachable allocations from all arguments of
compatible types must be assumed to alias. For example:

1 fn main() {
2 let a = (0,) in
3 let b = (1,) in
4 let c = ("",) in
5 let d = (a,) in
6 let e = (c,) in
7 mystery(a, b, c, d, e)
8 }

After calling mystery, your pointer analysis should assume that d.0 aliases the allocations for a or
b. Your pointer analysis should not assume that a aliases b, because a is not assignable to b in
mystery. Your pointer analysis should not assume that e.0 aliases a or b, because those allocations
have a different type.

Your pointer analysis should distinguish between concrete allocations (those occurring in the body
of a function) and abstract allocations (those provided as input to a function). For example, consider
this program:

1 fn set_val(x: (int,), y: int) {
2 x.0 := y
3 }
4

5 fn main() {
6 let t = (0,) in
7 set_val(t, secure());
8 println(int_to_string(t.0))
9 }

Your analysis should analyze set_val in the context that y is tainted. The transfer function for
x.0 := y should therefore add x.0 to the tainted set. However, the model of memory locations
(the output of the aliases function) used in Assignment 3 did not let us describe the location x.0
because x points to an allocation coming from the caller. You should use the technique discussed
in the second information flow lecture to extend your model of allocations to include abstract
allocations.

1Interprocedural pointer analysis has been the subject of much research. See Hind et al. “Interprocedural Pointer
Alias Analysis” for an early approach to this problem.

Handling function calls

Your analysis should be interprocedural. To handle function calls, you first need to determine the
function being called. For this, you should reuse your constant analysis from Assignment 32. If a
function cannot be resolved, then your analysis should assume the worst: all reachable places from
the fuction’s arguments (and its return) are tainted. If a function is resolved to a standard library
function, then your analysis should just assume that the output is tainted if any reachable input is
tainted.

Your analysis should be context-sensitive, where a context is the set of tainted parameters. You
should use the algorithm described in the first information flow analysis lecture to recursively invoke
the intraprocedural algorithm on a called function starting with a given context. For simplicity,
you can treat recursive function calls as a call to an unknown function.

Handling indirect flows

To handle indirect flows, you will need to first implement the algorithm for computing control
dependences described in the second information flow analysis lecture3. You should use the domi-
nator functions provided by petgraph to compute the reverse CFG and post-dominator tree. See:
dominators::simple fast and Dominators.

Implementation Tips

To help you design your analysis, I’ll give you a high-level picture of how the reference solution is
implemented. The entry point to the analysis has three stages: (1) compute intraprocedural facts,
(2) compute interprocedural taint, (3) check for erroneous use of tainted values.

1. Compute intraprocedural facts: Intraprocedural facts include pointer analysis, constant
analysis, and control dependencies. For each function, I store all these data structures in a
single Facts struct.

2. Compute interprocedural taint: I have two structures, GlobalAnalysis and LocalAnalysis.
The global structure holds the taint analysis results for all functions analyzed thus far, along
with all the intraprocedural facts computed in step 1. When asked to analyze a single func-
tion, GlobalAnalysis build a LocalAnalysis struct which implements the Analysis trait and
holds a pointer to the GlobalAnalysis struct.

• The LocalAnalysis transfer function handles three main cases: function calls, alloca-
tions, and a generic implementation for all remaining instructions.

• The GlobalAnalysis struct holds a field results of type:

RefCell<
HashMap<Symbol,

HashMap<Vec<Place>,
IndexSet<MemLoc>>>>

2A more sophisticated analysis could do an interprocedural constant analysis to analyze calls to higher-order
functions. This approach is called control-flow analysis, since it functional languages it’s necessary to recover the
global control flow structure of a program. See Olin Shriver’s 1991 dissertation “Control-Flow Analysis of Higher-
Order Languages.”

3See Cytron et al. “Efficiently Computing Static Single Assignment Form and the Control Dependence Graph”
(Section 4) for a full description of the algorithm.

https://docs.rs/petgraph/latest/petgraph/algo/dominators/fn.simple_fast.html
https://docs.rs/petgraph/latest/petgraph/algo/dominators/struct.Dominators.html

The RefCell allows this structure to be mutated even behind an immutable reference.
The HashMap<Symbol, ...> defines a map from a function’s name to its data. The
HashMap<Vec<Place>, IndexSet<MemLoc>> maps from function contexts to tainted in-
puts/outputs.

3. Check for erroneous use of tainted values: This step should walk the program and look
for calls to println. If a function has multiple calling contexts, you should consider whether
the call to println is tainted in any possible context.

The reference implementation is about 500 sloc.

Grading

Your implementation will be tested against a suite of programs which are expected to pass or fail,
and you get points for each successful test. All tests have been provided to you as a ZIP file on the
course website.

3We use Vec<Place> instead of HashSet<Place> because in Rust, hash sets are not themselves hashable. Note that
it’s therefore important that your contexts are sorted, so [x, y] is not treated differently than [y, x].

Program P ::= I∗

Instr I ::= x = rv | goto i | if x goto i1 else i2

Rvalue rv ::= c | x | x1 ⊕ x2

Binop ⊕ ::= + | / | =

Figure 1: Bytecode syntax

Configuration C ∈ {prog : Program, pc : N, locals : Var ⇀ Const}

C ⊢ rv ⇓ c

C ⊢ c ⇓ c
Rv-Const

x ∈ dom(C.locals)

C ⊢ x ⇓ C.locals(x)
Rv-Var

C ⊢ x1 ⇓ c1 C ⊢ x2 ⇓ c2 c3 = c1 ⊕ c2

C ⊢ x1 ⊕ x2 ⇓ c3
Rv-Binop

C ↪→ C ′

C.prog[C.pc] = “x = rv” C ⊢ rv ⇓ c

C ↪→ {C with pc = C.pc+ 1, locals = C.locals[x 7→ c]}
E-Stmt

C.prog[C.pc] = “goto i”

C ↪→ {C with pc = i}
E-Goto

C.prog[C.pc] = “if x goto i1 else i2” C ⊢ x ⇓ true

C ↪→ {C with pc = i1}
E-If-True

C.prog[C.pc] = “if x goto i1 else i2” C ⊢ x ⇓ false

C ↪→ {C with pc = i2}
E-If-False

Figure 2: Bytecode semantics

