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Assignment 3: Optimization

Due: 10/16/25 at 11:59pm
Submission link: https://www.gradescope.com/courses/1107485/assignments/6891118

In this assignment, you will implement two different kinds of compiler optimizations using the
program analysis techniques we discussed in class.

3a: Dataflow Analysis (50 points)

Motivation

As a motivating example, consider this Rice program:

fn main() {
let x = "Hello"” in
let y = x © " world” in
println(y)
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The Rice compiler will generate unoptimized bytecode for main (with some unused locals removed):

fn main(x0: ()) -> O {
local x0: ()
local x1: ()
local x2: string
local x3: string
local x4: fn(string) -> ()
bbo:
x2 = "Hello”
x3 = x2 ° " world”
x4 = closure(println, [1)
x1 = x4(x3)
return x1
3

Constant analysis on main should deduce that x2 is always "Hello"”, x3 is always "Hello world”,
and x4 is always closure(println, []). After constant analysis, the compiler can propagate those
constants in the bytecode:

// After constant propagation

fn main(x0: ()) -> O {
local x0: ()
local x1: ()
local x2: string
local x3: string
local x4: fn(string) -> ()
bbo:
x2 = "Hello”

x3 = "Hello world”

x4 = closure(println, [1)
x1 = println("Hello world")
return x1
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Next, the compiler can eliminate the unused variables x2, x3, x4 by performing dead code elimination
(DCE). DCE analyzes the liveness of variables and uses the following rule: given a statement x = rv,
if z is not live after the statement, and rv has no possible side effects, then the statement is dead
code and can be removed. Applied to our example, we end up with the following program:

// After constant propagation and dead code elimination
fn main(x0: ()) -> O {
local x0: ()
local x1: ()
bbo:
x1 = println("Hello world")
return x1

Specification

The Rice starter code contains the skeleton of a dataflow analysis framework in bc/dataflow/mod.rs,
heavily inspired by the rustc_mir_dataflow module in the Rust compiler. A dataflow analysis
must implement the Analysis trait, specifying an abstract domain Domain which must be a join-
semilattice, as well as specifying a bottom element and a transfer function.

Worklist algorithm

Your first challenge is to implement analyze_to_fixpoint<A: Analysis>, which uses the worklist
algorithm to compute the fixpoint solution for an arbitrary dataflow analysis. The algorithm should
follow the direction specified by A: :DIRECTION. Its return type is:

IndexVec<Location, <A as Analysis>::Domain>

This type conceptually represents a mapping from locations (CFG instructions) to abstract domains.
It is implemented using the IndexVec type from the indexical crate, which is essentially a Vec
except indexed by LocationIdx instead of usize. Note that the i-th entry should contain o}", not

out “as that is generally the state you want during optimizations.

o,

The reference implementation of analyze_to_fixpoint is 40 significant lines of code (SLOC, code
without whitespace or comments).

Optimization passes

Your second challenge is to implement constant propagation and dead code elimination as optimiza-
tion passes based on constant analysis and liveness analysis. An optimization pass is any function
which takes &mut Function and returns a bool which is true if the pass modifies the program. For
example, for DCE you will need to define a function such as:

pub fn dead_code(func: &mut Function) -> bool {
// return true if code was eliminated
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To register this pass with the optimizer, add Box: : new(dead_code) to the passes vector in optimize_func.

This function executes all dataflow passes in sequence to a fixpoint.



Constant propagation. Your constant analysis must implement support for the following fea-
tures:

e Anything which is a Const or a Closure with an empty environment should be trackable as
a constant. This does not include GC-allocated types like tuples, structs, arrays, interface
objects, or closures with environments.

e Constants should be tracked through assignments and copies. This does not include pro-
jections or array indexing. For example, given the program let x = (1, 1) in x.0, your
analysis does not need to determine that x.0 is 1.

e Constants should be folded for at least the following binary operators: addition/subtraction/-
multiplication/division over floats and integers, and concatenation over strings.

The reference implementation of constant propagation is 170 SLOC.

Dead code elimination. Your DCE must implement support for the following features:

e Liveness should be tracked at the granularity of locals. Your liveness analysis does not need
to be field-sensitive.

e The following operations should be assumed to have a potential side effect: function calls,
array indexing (reads or writes), and division. You can assume memory allocation will never
fail, and so does not have a side effect.

The reference implementation of DCE is 80 SLOC.

Implementation
Some tips for the implementation:

e When implementing analyze_to_fixpoint, note that JoinSemiLattice::join is defined such
that it returns true if self changes. You can use this fact to implement a variant of the worklist
algorithm we discussed in class.

e For constant analysis, you will need to define a new data type for its abstract domain, and
implement JoinSemiLattice for that type. For liveness analysis, you should not need to
define a new data type for its abstract domain.

e For optimization passes, the VisitMut trait is a handy way to walk over a function and edit
its instructions in-place.

e For DCE, once you delete instructions from the body, you will need to call Body: : regenerate_domain
to remove unused locations from the body’s location domain.

Grading

The autograder will use the -01 flag to enable optimizations and the --dump-ir flag to emit a JSON
representation of the optimized bytecode. Your compiler will be run on a series of programs which
should contain no constant assignments or binary operators once optimized. For a given program,
if your compiler misses any optimization opportunities, then it fails the test. Additional regression
tests have been added to ensure the soundness of your analyses.



3b: Escape Analysis (50 points)

Motivation

As a motivating example, consider this Rice program:

fn construct_greetings() -> [string] {
let parts = ("Hello”, " world”) in
let greetings = [parts.@ " parts.1, parts.1
greetings

}

~

parts.0] in

fn main() {
let g = construct_greetings() in
println(glel);
println(gl1])
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The tuple parts does not escape the function where it is defined, and the array greetings does. An
efficient language runtime can therefore stack-allocate the tuple parts outside the purview of the
garbage collector, and free its memory immediately upon returning from construct_greetings.

Specification
Pointer analysis

Your first challenge is to implement an intra-procedural flow-insensitive field-sensitive Andersen-
style pointer analysis. This pointer analysis should be able to determine for any given place p the
set of allocations which p may point to. The pointer analysis does not need to distinguish between
different indexes of an array.

The reference implementation of pointer analysis is 200 SLOC.

Escape analysis

Your second challenge is to implement an escape analysis on top of the pointer analysis. Your
escape analysis should identify all allocations in a function which definitely do not escape by (1)
a return, (2) a function call, or (3) an assignment to an argument. An optimization pass built on
the escape analysis should then change the AllocLoc of all non-escaping allocations to Stack.

The reference implementation of escape analysis is 70 SLOC.

Stack runtime

Your third challenge is to implement stack allocations in the Rice runtime. Your implementation
should satisfy the following design criteria:

e Tuples and arrays can be stack-allocated (you can ignore closures).
e The representation of a pointer to a stack-allocated value is up to you to decide.

e Stack-allocated data should be stored on the Frame so it is deallocated when the frame is
deallocated. (“Stack-allocated” is a slight misnomer, as you will have to heap-allocate these
objects, just not in the Wasmtime GC.)



e You only need to implement stack allocation in the interpreter, not the Wasm compiler.

Implementation tips

e To track allocations, it may be helpful to define a newtype for locations like struct Allocation(Location)
along with a newtype index over allocations.

e When considering function/method calls in pointer analysis, the safest default is to assume
that all inputs could flow to each other, and that all inputs could flow to the output.

e Don’t forget to check every sub-place of a returned place when looking for escaping allocations.

e When considering the representation of pointers to stack-allocated values, it may be helpful
that you can check at runtime whether a Wasmtime Val represents a primitive value or a
GC’d reference.

Grading

As with 3a, the autograder will use the --dump-ir flag to analyze your compiler’s generated byte-
code. Your pointer and escape analysis will be graded on a set of test cases based on whether your
compiler converts every possible heap allocation to a stack allocation (not too many, not too few).
Your stack runtime is difficult to automatically grade, so I will manually review your code for its
adherence to the design criteria specified above.



