
CSCI 1951Q

Topics in Programming Languages:
Program Analysis

Example #1: Type checking
interface Printable {
 print(): void;
}

class A implements Printable {
 print() { console.log("A") }
}

class B {}

function printList<T extends Printable>(l: T[]) {
 for (let t of l) {
 t.print();
 t.send();
 }
}

printList([new A()])
printList([new B()])

Typescript

Example #2: Type inference

let apply_left f (x, y) =
 (f x, y)

val apply_left :
 ('a → 'b) →
 'a * 'c →
 'b * 'c

OCaml
Polymorphic inference in

function unwrap<T>(
 x: {success: T} | {error: string}
): T {
 if ("error" in x) {
 // x: {error: string}
 throw new Error(x.error);
 } else {
 // x: {success: T}
 return x.success;
 }
}

Typescript
Flow-sensitive inference in

Basic inference in C++ std::vector<std::string> v = {"a", "b"};
 auto v = {"a", "b"};

Example #3: Pointer analysis

Ownership in Rust
let mut v = vec![1, 2, 3];
let n = &v[0];
v.push(0);
println!("{n}");

class C {
 int getLength(
 @Nullable String s
) {
 return s.length();
 }
}

Bug-finding in Java w/ Infer

error[E0502]: cannot
borrow `v` as mutable
because it is also
borrowed as immutable

error: object s is
annotated with @Nullable
and is dereferenced
without a null check

Example #4: Dataflow optimizations
#[unsafe(no_mangle)]
pub fn sum_two_A(
 v: &[i32]
) -> i32 {
 assert!(v.len() > 1);
 let x = v[0];
 let y = v[1];
 x + y
}

#[unsafe(no_mangle)]
pub fn sum_two_B(
 v: &[i32]
) -> i32 {
 let x = v[0];
 let y = v[1];
 x + y
}

sum_two_A:
 cmp rsi, 1
 jbe .PANIC
 mov eax, dword ptr [rdi + 4]
 add eax, dword ptr [rdi]
 ret
.PANIC:
 ; ... panic code ..

sum_two_B:
 push rax
 cmp rsi, 1
 je .PANIC_1
 test rsi, rsi
 je .PANIC_2
 mov eax, dword ptr [rdi + 4]
 add eax, dword ptr [rdi]
 pop rcx
 ret
.PANIC_1:
 ; ... panic code ...
.PANIC_2:
 ; ... panic code ...

https://godbolt.org/z/e6ehGY93Y

Example #5: Coverage-guided fuzzing
let path = args().skip(1).next().unwrap();
let contents = fs::read_to_string(&path).unwrap();
if let Some("a") = contents.get(0..1) {
 if let Some("b") == contents.get(1..2) {
 if let Some("c") = contents.get(2..3) {
 panic!("Invariant violated!");
 }
 }
}
cargo afl fuzz -i in -o out target/release/example @@

crash.txt:
xyz

Example #6: JIT compilation

time (java -Xint Mandelbrot 16000 > /dev/null)
279.99s user 1.19s system 947% cpu 29.683 total

time (java Mandelbrot 16000 > /dev/null)
10.83s user 0.07s system 918% cpu 1.187 total

time (node --jitless mandelbrot.js 16000 > /dev/null)
414.00s user 4.47s system 867% cpu 48.237 total

time (node mandelbrot.js 16000 > /dev/null)
13.21s user 0.11s system 929% cpu 1.433 total

cargo build --release
time (./target/release/mandelbrot 16000 > /dev/null)
3.38s user 0.03s system 461% cpu 0.737 total

Example #7: Parallelization &
Differentiation

def mean(X):
 acc = 0
 for n in X:
 acc += n
 return acc / len(X)

def means(X):
 acc = []
 for row in X:
 acc.append(mean(row))
 return acc

mean = lambda X: X.sum() / len(X)
means = jit(lambda X: jnp.stack([mean(row) for row in X]))
means.trace(X).lower().as_text()

module @jit__lambda_ attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} {
 func.func public @main(%arg0: tensor<3x3xf32>) -> (tensor<3xf32> {jax.result_info = ""}) {
 %0 = stablehlo.slice %arg0 [0:1, 0:3] : (tensor<3x3xf32>) -> tensor<1x3xf32>
 %1 = stablehlo.reshape %0 : (tensor<1x3xf32>) -> tensor<3xf32>
 ...

loss = lambda X: means(X).sum()
grad(loss)(X)

Array([[0.33333334, 0.33333334, 0.33333334],
 ...

Program analysis is about algorithms to
answer fundamental questions about
program behavior.

Does this program have undefined behavior?
When is this data no longer needed?
What kind of values can this variable take?
What’s the hottest code path in my program?

Systems programming
Which analyses make fast code?

Software engineering
Which analyses solve real bugs?

Complexity theory
Which analyses are feasible?

Language theory
Which analyses are correct?

Human factors
Which analyses are usable by devs?

Program analysis draws on many fields

The computability theory foundations of
program analysis

A refresher on the halting problem
Let be a Turing machine that take a description of another
Turing machine as input.

 cannot have the following behavior:

 outputs true if halts on all inputs, and false otherwise.

M(D)
D

M

M(D) D

Informal proof: let be the Turing machine which computes
 and loops forever if says halts.

If says halts, then does not halt.
If says does not halt, then halts.

Therefore, cannot exist.

F
M(F) M(F) F

M(F) F F
M(F) F F

M

The halting problem is undecidable*.

*There does not exist an algorithm
 which can compute a correct answer.

Rice’s theorem generalizes the halting problem
Let be a Turing machine that take a description of another
Turing machine as input.

Let be a non-trivial and extensional property of a Turing machine.

 cannot have the following behavior:

 outputs true if , and false otherwise.

M(D)
D

P
M
M(D) P(D)

non-trivial: there are machines both with and without
(trivial: = all machines)
extensional: does not distinguish between machines with
identical input/output behavior.
(non-extensional: = the set of machines with 3 states)

P
P

P

P

Informal proof of Rice’s theorem by
reduction to the halting problem

Assume decides whether satisfies . We want to decide
whether halts.

Let be a Turing machine which satisfies .

Construct the machine which calls and returns .

Then outputs true iff halts.

R(D) D P
D

F P

D′￼(x) D(x) F(x)

R(D′￼) D

Every interesting program
property is undecidable!

…and yet…?

Option 1: Approximate analysis

D
P(D) ¬P(D)

M(D)

: true = definitely halts
 false = might halt
M D

D

Example: = halts.P(D) D Example: = has no
 undefined behavior.

P(D) D

: true = definitely no UB
 false = maybe UB
M D

D

M(D) ⟹ P(D)

Design algorithms that are wrong in a predictable way

Option 2: Dynamic analysis
Make educated guesses based on past program executions

Timenow

Does this variable always have the
same type?

Assume it always will and produce
specialized code w/ guards

Has this input covered new
branches?

Assume it will find more and keep
modifying it

Is this virtual method call always
going to the same method?

Assume it always will and use a
direct method call w/ guards

Option 3: Domain-specific analysis
Rice’s theorem is only true for Turing-complete languages

No halting problem if you don’t have general recursion!

let f = \(s : Text) -> f s in
f "Hello"
Error: Unbound variable: f

Dhall:

let rec f = fun (s : string) -> f s in
f "Hello"

OCaml:

[infinite loop]

Option 3: Domain-specific analysis
Rice’s theorem is only true for Turing-complete languages

SELECT * FROM orders
WHERE total_amount > 100
 AND customer_id = 123

orders = [
 row for row in orders
 if row.customer_id == 123 \
 and row.total_amount > 100]

SELECT * FROM orders
WHERE customer_id = 123
 AND total_amount > 100

✅

❌
orders = [
 row for row in orders
 if row.total_amount > 100 \
 and row.customer_id == 123]

@dataclass
class Id:
 id: int

 def __eq__(self, value):
 print("I'm being equated!!”)
 return self.id == int(value)

@dataclass
class Row:
 customer_id: Id
 total_amount: float

cel.cs.brown.edu/csci-1951q-f25/
Course info

https://cel.cs.brown.edu/csci-1951q-f25/

