CSCI1951Q

Topics in Programming Languages:
Program Analysis

Example #1: Type checking

interface Printable { Typescript

print(): void;
Iy

class A implements Printable {
print() { console.log("A") 7+
Iy

class B {}

function printList<T extends Printable>(1l: T[]) {
for (let t of 1) {
t.print();
t.send();

}

printList([new A
printList([new B

()1)
()1)

Example #2: Type inference

P : std::vector<std::string> v = {"a", "b"};
Basic inference in C++ uto v = {"an. wpu).
Polymorphic inference in Flow-sensitive inference in
OCaml Typescript
let apply left f (x, y) = function unwrap<T>(

(f x, y) x: {success: T} | {error: string}
) T A
val apply left : if ("error" in x) {

('‘a > 'b) » // x: {error: string}

'a * 'c > throw new Error(x.error);

'b * 'c } else {

// x: {success: T}
return Xx.success;

Example #3: Pointer analysis

Ownership in Rust

let mut v = vec![1, 2, 31;
let n = &vl[o];

v.push(9);

println! ("{n}");

error[EO502]: cannot
porrow VvV as mutable
because 1t 1s also
horrowed as immutable

Bug-finding in Java w/ Infer

class C {
int getLength(
©Nullable String s
) o

return s.length();
s

}

error: object s 1is
annotated with @©Nullable
and 1s dereferenced
without a null check

Example #4: Dataflow optimizations

#[unsafe(no_mangle)]
pub fn sum_two_ A(

v: &[132]
) —> 132 {

assert!(v.len() > 1);

let x = v[0];
let vy = v[1];
X + y

}

#[unsafe(no_mangle)]
pub fn sum_two_ B

v: &[132]
) —> 132 {

let x = v[0O];

let v = v[1];

X + y

}

https://godbolt.org/z/e6ehGY93Y

sum_two_A:
cmp
jbe
mov
add
ret

.PANIC:

°
I

sum_two_B:
push
cmp
je
test
je
mov
add
pop
ret

.PANIC_1:

.PANIC_2:

I

rsi, 1

.PANIC

eax, dword ptr [rdi + 4]
eax, dword ptr [rdil]

. panic code ..

rax
rsi, 1

.PANIC_ 1

rsi, rsi

.PANIC 2

eax, dword ptr [rdi + 4]
eax, dword ptr [rdil]

YcX

. panic code ...

. panic code ...

Example #5: Coverage-guided fuzzing

let path

let contents = fs:

if let Some("b")

if let Some("c")
panic! ("Invariant violated!");

¥
¥

args().skip(1).next().unwrap();
:read_to_string(&path).unwrap();
if let Some("a") = contents.get(0..1) {
contents.get(1..2) {
contents.get(2..3) {

cargo afl fuzz -1 1n —-o out target/release/example @@

— process timing
run time

— cycle progress

— stage progress

stage execs :

avar cheoad -

++4.33c {default}

(target/release/foobar)
overall results

last new find :
last saved crash :
last saved hang :

: 0 days, @ hrs, @ min, 14 sec
@ days, @ hrs, @ min, 12 sec
@ days, @ hrs, 0 min,

none seen yet

now processing :
runs timed out :

6.26 (75.0%)
0 (0.00)

o\o

now trying : havoc
132/400 (33.00%)

total execs : 31.5k
D297/ car

cycles done : 18
corpus count : 8
2 sec saved crashes : 2
saved hangs : 0

map coverage
map density :
count coverage : 1.85 bits/tuple

findings in depth
favored items : 8 (100.00%)
new edges on : 8 (100 00°)

total crashes : 44 (2 saved)
+n¥tal +Fmonunte = 0 (0D cavpd\

crash.txt:
Xy Z

Example #6: JIT compilation

cargo build ——release
time (./target/release/mandelbrot 16000 > /dev/null)
3.38s user 0.03s system 461% cpu 0.737 total

time (java -Xint Mandelbrot 16000 > /dev/null)
279.99s user 1.19s system 947% cpu 29.683 total

time (java Mandelbrot 16000 > /dev/null)
10.83s user 0.07s system 918% cpu 1.187 total

time (node —--jitless mandelbrot.js 16000 > /dev/null)
414.00s user 4.47s system 867% cpu 48.237 total

time (node mandelbrot.js 16000 > /dev/null)
13.21s user 0.11s system 929% cpu 1.433 total

Example #7: Parallelization &
Differentiation

def mean(X): def means(X):
acc = 0 acc = [|
for n in X: for row in X:
acc += n acc.append(mean(row))
return acc / len(X) return acc

mean = lambda X: X.sum() / len(X)
means = jit(lambda X: jnp.stack([mean(row) for row in X]))
means.trace(X).lower().as text()

module (@jit__lambda_ attributes {mhlo.num_partitions = 1 : 132, mhlo.num_replicas = 1 : 132} {
func.func public @main(%arg@: tensor<3x3xf32>) —-> (tensor<3xf32> {jax.result_info = ""}) {
%0 = stablehlo.slice %arg® [0:1, 0:3] : (tensor<3x3xf32>) —> tensor<ix3xf32>
%1 stablehlo.reshape %0 : (tensor<1x3xf32>) —> tensor<3xf32>

loss = lambda X: means(X).sum()
grad(loss) (X)

Array([[0.33333334, 0.33333334, 0.33333334],

Program analysis is about algorithms to
answer fundamental questions about
program hehavior.

Does this program have undefined behavior?
When is this data no longer needed?
What kind of values can this variable take?

What's the hottest code path in my program?

Complexity theory Lar

Which analyses are feasible? Whi

Program analysis draw
Systems programming S0

Which analyses make fast code? Wh

Human factors
Which analyses are usa

00N Meta 3.8 %

$323K - $522K/yr Total Pay
$405K Median

Compiler Engineer

@ Apple 41%

$253K - $421K/yr Total Pay
$323K Median

Compiler Engineer

NVIDIA 4.6 %

nnnnnn

$238K - $371K/yr Total Pay
$295K Median

Compiler Engineer

The computability theory foundations of
program analysis

A refresher on the halting problem

Let M (D) be a Turing machine that take a description of another
Turing machine D as input.

M cannot have the following behavior:

M(D) outputs true if D halts on all inputs, and false otherwise.

Informal proof: let /' be the Turing machine which computes
M(F) and loops forever if M (F’) says F halts.

If M(F’) says I halts, then F' does not halt.
If M(F') says F’ does not halt, then F halts.

Therefore, M cannot exist.

The halting problem is undecidable*.

*There does not exist an algorithm
which can compute a correct answer.

Rice's theorem generalizes the halting problem

Let M (D) be a Turing machine that take a description of another
Turing machine D as input.

Let P be a non-trivial and extensional property of a Turing machine.

M cannot have the following behavior:
M(D) outputs true if P(D), and false otherwise.

non-trivial: there are machines both with and without P
(trivial: P = all machines)

extensional: P does not distinguish between machines with
identical inputfoutput behavior.

(non-extensional: P = the set of machines with 3 states)

Informal proof of Rice's theorem by
reduction to the halting problem

Assume R(D) decides whether D satisfies P. We want to decide
whether D halts.

Let /" be a Turing machine which satisfies P.
Construct the machine D’(x) which calls D(x) and returns F(x).

Then R(D’) outputs true iff D halts.

Every interesting program
property is undecidable!

..and yet...?

Option 1: Approximate analysis
Design algorithms that are wrong in a predictable way

M(D) = P(D)

Example: P(D) = D halts. Example: P(D) = D has no
undefined behavior.

M: true = D definitely halts ~ M: true = D definitely no UB
false = D might halt false = 1D maybe UB

Option 2: Dynamic analysis
Make educated guesses based on past program executions

=
=

Time

e e

Does this variable always have the
same type?

Assume it always will and produce
specialized code w| guards

s this virtual method call always
going to the same method?

Assume it always will and use a
direct method call w/ guards

Assume it will find more and keep
modifying it

Has this input covered new
branches?

Option 3: Domain-specific analysis
Rice's theorem is only true for Turing-complete languages

No halting problem if you don't have general recursion!
OCaml: let rec f = fun (s : string) -> f s in
" f "Hello"
[infinite loop]

Dhall: let f = \(s : Text) -> f s in
f "Hello"

Error: Unbound variable: f

Option 3: Domain-specific analysis
Rice's theorem is only true for Turing-complete languages

SELECT * FROM orders SELECT * FROM orders
WHERE total_amount > 100 essstgp WHERE customer _1d = 123
AND customer_id = 123 AND total amount > 100
orders = [orders = [
row for row in orders x row for row in orders
if row.customer id == 123 \ _> if row.total amount > 100 \
and row.total amount > 100] and row.customer id == 123]
©Wdataclass
@dataclass class Id:
class Row: 1d: 1int
customer_1id: Id
total amount: float def __eq__(self, value):

print("I'm being equated!!")
return self.id == int(value)

Course info
cel.cs.brown.edu/csc1i-1951q-f25/

https://cel.cs.brown.edu/csci-1951q-f25/

